Existence of Weakly Cooperative Equilibria for Infinite-Leader-Infinite-Follower Games

Abstract

In this paper, we first generalize Yang and Ju’s (J Glob Optim 65:563–573, 2016) result in Hausdorff topological vector spaces. Second, we introduce the model of leader-follower games with infinitely many leaders and followers, that is, infinite-leader-infinite-follower game. We next introduce the notion of weakly cooperative equilibria for infinite-leader-infinite-follower games and prove the existence result.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader–follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Yu, J., Wang, H.L.: An existence theorem of equilibrium points for multi-leader–follower games. Nonlinear Anal. Theory Methods Appl. 69(5–6), 1775–1777 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Hu, M., Fukushima, M.: Variational inequality formulation of a class of multi-leader–follower games. J. Optim. Theory Appl. 151(3), 455–473 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ding, X.P.: Equilibrium existence theorems for multi-leader-follower generalized multiobjective games in FC-spaces. J. Glob. Optim. 53(3), 381–390 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Jia, W.S., Xiang, S.W., He, J.H., Yang, Y.L.: Existence and stability of weakly Pareto–Nash equilibrium for generalized multiobjective multi-leader–follower games. J. Glob. Optim. 61(2), 397–405 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Aumann, R.J.: The core of a cooperative game without side payments. Trans. Am. Math. Soc. 98, 539–552 (1961)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Scarf, H.E.: On the existence of a cooperative solution for a general class of \(n\)-person games. J. Econ. Theory 3, 169–181 (1971)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kajii, A.: A generalization of Scarf’s theorem: an \(\alpha \)-core existence theorem without transitivity or completeness. J. Econ. Theory 56, 194–205 (1992)

    Article  Google Scholar 

  9. 9.

    Askoura, Y., Sbihi, M., Tikobaini, H.: The ex ante \(\alpha \)-core for normal form games with uncertainty. J. Math. Econ. 49, 157–162 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Noguchi, M.: Cooperative equilibria of finite games with incomplete information. J. Math. Econ. 55, 4–10 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Noguchi, M.: Alpha cores of games with nonatomic asymmetric information. J. Math. Econ. 75, 1–12 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Askoura, Y.: An interim core form normal form games and exchange economies with incomplete information. J. Math. Econ. 58, 38–45 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Askoura, Y.: The weak-core of a game in normal form with a continuum of players. J. Math. Econ. 47, 43–47 (2011)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Askoura, Y.: On the core of normal form games with a continuum of players. Math. Soc. Sci. 89, 32–42 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Yang, Z.: Some infinite-player generalizations of Scarf’s theorem: finite-coalition \(\alpha \)-cores and weak \(\alpha \)-cores. J. Math. Econ. 73, 81–85 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yang, Z.: Some generalizations of Kajii’s theorem to games with infinitely many players. J. Math. Econ. 76, 131–135 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Yang, Z., Ju, Y.: Existence and generic stability of cooperative equilibria for multi-leader–multi-follower games. J. Glob. Optim. 65, 563–573 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Martins-da-Rocha, V.F., Yannelis, N.: Nonemptiness of the alpha-core. Fgv/epge Economics Working Papers (2011). https://doi.org/10.1107/S0567740869005723

  19. 19.

    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhikers Guide. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhe Yang.

Additional information

This research was supported by the National Natural Science Foundation of China (No. 11501349) and Graduate Innovation Foundation sponsored by Shanghai University of Finance and Economics (No. CXJJ-2017-375).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Gong, Q. Existence of Weakly Cooperative Equilibria for Infinite-Leader-Infinite-Follower Games. J. Oper. Res. Soc. China 7, 643–654 (2019). https://doi.org/10.1007/s40305-018-0236-0

Download citation

Keywords

  • (Weakly) cooperative equilibrium
  • Infinite-leader–infinite-follower game
  • Existence

Mathematics Subject Classification

  • 91A10
  • 91A12
  • 91A40