Bi-level Programming for Stackelberg Game with Intuitionistic Fuzzy Number: a Ranking Approach

Abstract

This paper introduces a ranking function procedure on a bi-level programming for Stackelberg game involving intuitionistic fuzzy parameters. Intuitionistic fuzzy number is considered in many real-life situations, so it makes perfect sense to address decision-making problem by using some specified intuitionistic fuzzy numbers. In this paper, intuitionistic fuzziness is characterized by a normal generalized triangular intuitionistic fuzzy number. A defuzzification method is introduced based on the proportional probability density function associated with the corresponding membership function, as well as the complement of non-membership function. Using the proposed ranking technique, a methodology is presented for solving bi-level programming for Stackelberg game. An application example is provided to demonstrate the applicability of the proposed methodology, and the achieved results are compared with the existing methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Von, H.: The Theory of the Market Economic. Oxford University Press, New York (1952)

    Google Scholar 

  2. 2.

    Kiyota, S., Aiyishi, E.: A new computational method for Stackelberg and min-max problem use of a penalty method. IEEE Trans. Autom. Control 26(2), 460–466 (1981)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Maiti, S.K., Roy, S.K.: Multi-choice stochastic bi-level programming problem in co-operative nature via fuzzy programming approach. J. Ind. Eng. Int. 12(3), 287–298 (2016)

    Article  Google Scholar 

  4. 4.

    Roy, S.K., Maiti, S.K.: Stochastic bi level programming with multi-choice for Stackelberg game via fuzzy programming. Int. J. Oper. Res. 29(4), 508–530 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Zhang, G., Lu, J., Dillon, T.: Decentralized multi-objective bi-level decision making with fuzzy demand. Knowl. Based Syst. 20(5), 495–507 (2007)

    Article  Google Scholar 

  6. 6.

    Lachhwani, K., Poonia, M.P.: Mathematical solution of multi-level fractional programming problem with fuzzy goal programming approach. J. Ind. Eng. Int. 8(16), 1–11 (2012)

    Google Scholar 

  7. 7.

    Shih, H.S., Lee, E.S.: Compensatory fuzzy multiple level decision making. Fuzzy Sets Syst. 114(1), 71–87 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Sinha, S.: Fuzzy programming approach to multi-level programming problems. Fuzzy Sets Syst. 136(2), 189–202 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Roy, S.K.: Fuzzy programming techniques for Stackelberg game. Tamsui Oxford J. Manag. Sci. 22(3), 43–56 (2006)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Mahapatra, D.R., Roy, S.K., Biswal, M.P.: Multi-choice stochastic transportation problem involving extreme value distribution. Appl. Math. Model. 37(4), 2230–2240 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Roy, S.K.: Multi-choice stochastic transportation problem involving Weibull distribution. Int. J. Oper. Res. 21(1), 38–58 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Maity, G., Roy, S.K.: Solving a multi-objective transportation problem with non-linear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 11(1), 62–70 (2015)

    Google Scholar 

  13. 13.

    Roy, S.K.: Transportation problem with multi-choice cost and demand and stochastic supply. J. Oper. Res. Soc. China 4(2), 193–204 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Roy, S.K., Maity, G., Weber, G.W., Gök, S.Z.A.: Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal. Ann. Oper. Res. 253(1), 599–620 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Roy, S.K.: Lagrange’s interpolation polynomial approach to solve multi-choice transportation problem. Int. J. Appl. Comput. Math. 1(4), 639–649 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Sakawa, M., Nishizaki, I., Uemura, Y.: Interactive fuzzy programming for multi-level linear programming problems with fuzzy parameters. Fuzzy Sets Syst. 109(1), 03–19 (2000)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  18. 18.

    Bhaumik, A., Roy, S.K., Li, D.F.: Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J. Intell. Fuzzy Syst. 33(1), 327–336 (2017)

    Article  Google Scholar 

  19. 19.

    Li, D.F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70(1), 73–85 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Roy, S.K., Ebrahimnejad, A., Verdegay, J.L., Das, S.: New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana 43(1), 3 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Hassan, M.N.: A new ranking method for intuitionistic fuzzy numbers. Int. J. Fuzzy Syst. 12(1), 80–86 (2010)

    MathSciNet  Google Scholar 

  22. 22.

    Parvathi, R., Malathi, C.: Intuitionistic fuzzy linear optimization. Notes Intuit. Fuzzy Set 18(1), 48–56 (2012)

    MATH  Google Scholar 

  23. 23.

    Varghese, A., Kuriakose, S.: Centroid of an intuitionistic fuzzy number. Notes Intuit. Fuzzy Sets 18(1), 19–24 (2012)

    MATH  Google Scholar 

  24. 24.

    Wan, S.P., Wang, Q.Y., Dong, J.Y.: The extended VIKOR method for multiattribute group decision making with triangular intuitionistic fuzzy numbers. Knowl. Based Syst. 52(3), 65–77 (2013)

    Article  Google Scholar 

  25. 25.

    Debnath, L.: Integral Transforms and Their Applications. CRC Press, New York (1965)

    Google Scholar 

  26. 26.

    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(2), 338–353 (1965)

    Article  Google Scholar 

  27. 27.

    Mitchel, H.B.: Ranking intuitionistic fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12(3), 377–386 (2004)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Nishad, A.K., Singh, S.R.: Linear programming problem with intuitionistic fuzzy number. Int. J. Comput. Appl. 106(8), 22–28 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the Associate Editor, Prof. Dong-Lei Du and the anonymous reviewers for their valuable comments to increase the novelty and overall quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sankar Kumar Roy.

Appendices

Appendix

A detailed calculation to show \(s_{1}=\frac{2}{(a_{2}-a_{1})}\) is given below:

$$\begin{aligned}&s_{1}\left[ \int _{a_{1}}^{a}\frac{(x-a_{1})}{(a-a_{1})}\hbox {d}x+\int _{a}^{a_{2}}\frac{(a_{2}-x)}{(a_{2}-a)}\hbox {d}x\right] =1,\\&\hbox {i.e.,}~~ ~s_{1}\left[ \frac{1}{(a-a_{1})}\int _{a_{1}}^{a}(x-a_{1})\hbox {d}x+\frac{1}{(a_{2}-a)}\int _{a}^{a_{2}}(a_{2}-x)\hbox {d}x\right] =1,\\&~~ ~s_{1}\left[ \frac{1}{(a-a_{1})}\left[ \frac{x^{2}}{2}-a_{1}x\right] _{a_{1}}^{a}+\frac{1}{(a_{2}-a)}\left[ a_{2}x-\frac{x^{2}}{2}\right] _{a}^{a_{2}}\right] =1,\\&~~ ~s_{1}\left[ \frac{1}{(a-a_{1})}\left[ \frac{a^{2}}{2}-aa_{1}+\frac{a_{1}^{2}}{2}\right] +\frac{1}{(a_{2}-a)}\left[ \frac{a_{2}^{2}}{2}-aa_{2}+\frac{a^{2}}{2}\right] \right] =1,\\&~~ ~s_{1}\left[ \frac{1}{2(a-a_{1})}\left[ a-a_{1}\right] ^{2}+\frac{1}{2(a_{2}-a)}\left[ a_{2}-a\right] ^{2}\right] =1,\\&~~ ~\frac{s_{1}}{2}\left[ \left[ a-a_{1}\right] +\left[ a_{2}-a\right] \right] =1,\\&\hbox {therefore}~~ s_{1}=\frac{2}{(a_{2}-a_{1})}.\\ \end{aligned}$$

Appendix

Another calculation is shown for \(s_{2}\) as follows:

$$\begin{aligned}&s_{2}\left[ \int _{a_{3}}^{a}\frac{(x-a_{3})}{(a-a_{3})}\hbox {d}x+\int _{a}^{a_{4}}\frac{(a_{4}-x)}{(a_{4}-a)}\hbox {d}x\right] =1,\\&\hbox {i.e.,}~~ ~s_{2}\left[ \frac{1}{(a-a_{3})}\int _{a_{3}}^{a}(x-a_{3})\hbox {d}x+\frac{1}{(a_{4}-a)}\int _{a}^{a_{4}}(a_{4}-x)\hbox {d}x\right] =1,\\&~~ ~s_{2}\left[ \frac{1}{(a-a_{3})}\left[ \frac{x^{2}}{2}-a_{3}x\right] _{a_{3}}^{a}+\frac{1}{(a_{4}-a)}\left[ a_{4}x-\frac{x^{2}}{2}\right] _{a}^{a_{4}}\right] =1,\\&~~ ~s_{2}\left[ \frac{1}{(a-a_{3})}\left[ \frac{a^{2}}{2}-aa_{3}+\frac{a_{3}^{2}}{2}\right] +\frac{1}{(a_{4}-a)}\left[ \frac{a_{4}^{2}}{2}-aa_{4}+\frac{a^{2}}{2}\right] \right] =1,\\&~~ ~s_{2}\left[ \frac{1}{2(a-a_{3})}\left[ a-a_{3}\right] ^{2}+\frac{1}{2(a_{4}-a)}\left[ a_{4}-a\right] ^{2}\right] =1,\\&~~ ~\frac{s_{2}}{2}\left[ \left[ a-a_{3}\right] +\left[ a_{4}-a\right] \right] =1,\\&\hbox {therefore}~~ s_{2}=\frac{2}{(a_{4}-a_{3})}. \end{aligned}$$

Appendix

Again detailed calculation is presented for \(M_{X}(2)\)

$$\begin{aligned} M_{X}(t)= & {} \int _{0}^{\infty }x^{t-1}\left[ \lambda h_{1}(x)+(1-\lambda )h_{2}(x)\right] \hbox {d}x\\= & {} 2\lambda \left[ \int _{a_{1}}^{a}x^{t-1}\frac{(x-a_{1})}{(a_{2}-a_{1})(a-a_{1})}\hbox {d}x+ \int _{a}^{a_{2}}x^{t-1}\frac{(a_{2}-x)}{(a_{2}-a_{1})(a_{2}-a)}\hbox {d}x\right] \\&+2(1-\lambda )\left[ \int _{a_{3}}^{a}x^{t-1}\times \frac{(x-a_{3})}{(a_{4}-a_{3})(a-a_{3})}\hbox {d}x+\int _{a}^{a_{4}}x^{t-1} \frac{(a_{4}-x)}{(a_{4}-a_{3})(a_{4}-a)}\hbox {d}x\right] \\= & {} 2\lambda \left[ \frac{1}{(a_{2}-a_{1})(a-a_{1})}\left[ \frac{x^{t+1}}{(t+1)}- \frac{a_{1}x^{t}}{t}\right] _{a_{1}}^{a}+\frac{1}{(a_{2}-a_{1})(a_{2}-a)}\times \left[ \frac{a_{2}x^{t}}{t}-\frac{x^{t+1}}{(t+1)}\right] _{a}^{a_{2}}\right] \\&+2(1-\lambda )\times \left[ \frac{1}{(a_{4}-a_{3})(a-a_{3})} \left[ \frac{x^{t+1}}{(t+1)}-\frac{a_{3}x^{t}}{t}\right] _{a_{1}}^{a} \right. \\&\left. +\frac{1}{(a_{4}-a_{3})(a_{4}-a)} \left[ \frac{a_{4}x^{t}}{t}-\frac{x^{t+1}}{(t+1)}\right] _{a}^{a_{4}}\right] \\= & {} 2\lambda \left[ \frac{1}{(a_{2}-a_{1})(a-a_{1})} \left[ \frac{\left[ a^{t+1}-a_{1}^{t+1}\right] }{(t+1)}- \frac{a_{1}\left[ a^{t}-a_{1}^{t}\right] }{t}\right] \right. \\&\left. + \frac{1}{(a_{2}-a_{1})(a_{2}-a)}\left[ \frac{a_{2} \left[ a_{2}^{t}-a^{t}\right] }{t} -\frac{\left[ a_{2}^{t+1}-a^{t+1}\right] }{(t+1)}\right] \right] \\&+2(1-\lambda )\left[ \frac{1}{(a_{4}-a_{3})(a-a_{3})} \left[ \frac{\left[ a^{t+1}-a_{3}^{t+1}\right] }{(t+1)}- \frac{a_{3}\left[ a^{t}-a_{3}^{t}\right] }{t}\right] \right. \\&\left. + \frac{1}{(a_{4}-a_{3})(a_{4}-a)}\left[ \frac{a_{4}\left[ a_{4}^{t}-a^{t}\right] }{t}- \frac{\left[ a_{4}^{t+1}-a^{t+1}\right] }{(t+1)}\right] \right] . \end{aligned}$$
$$\begin{aligned} \hbox {Therefore}\\ M_{X}(2)= & {} 2\lambda \left[ \frac{1}{(a_{2}-a_{1})(a-a_{1})} \left[ \frac{\left[ a^{3}-a_{1}^{3}\right] }{3}-\frac{a_{1} \left[ a^{2}-a_{1}^{2}\right] }{2}\right] \right. \\&\left. +\frac{1}{(a_{2}-a_{1})(a_{2}-a)} \left[ \frac{a_{2}\left[ a_{2}^{2}-a^{2}\right] }{2} -\frac{\left[ a_{2}^{3}-a^{3}\right] }{3}\right] \right] \\&+2(1-\lambda )\left[ \frac{1}{(a_{4}-a_{3})(a-a_{3})} \left[ \frac{\left[ a^{3}-a_{3}^{3}\right] }{3}-\frac{a_{3} \left[ a^{2}-a_{3}^{2}\right] }{2}\right] \right. \\&\left. +\frac{1}{(a_{4}-a_{3})(a_{4}-a)}\left[ \frac{a_{4}\left[ a_{4}^{2}-a^{2}\right] }{2}-\frac{\left[ a_{4}^{3}-a^{3}\right] }{3}\right] \right] \\= & {} 2\lambda \left[ \frac{1}{(a_{2}-a_{1})}\left[ \frac{(2a^{2}-aa_{1}-a_{1}^{2})}{6}+\frac{a_{2}^{2}+aa_{2}-2a^{2}}{6}\right] \right] \\&+2(1-\lambda )\left[ \frac{1}{(a_{4}-a_{3})}\left[ \frac{(2a^{2}-aa_{3}-a_{3}^{2})}{6}+ \frac{(a_{4}^{2}+aa_{4}-2a^{2})}{6}\right] \right] \\= & {} 2\lambda \left[ \frac{(a_{2}-a_{1})(a+a_{1}+a_{2})}{6(a_{2}-a_{1})}\right] +2(1-\lambda )\left[ \frac{(a_{4}-a_{3})(a+a_{3}+a_{4})}{6(a_{4}-a_{3})}\right] \\= & {} \frac{(a+a_{3}+a_{4})+\lambda (a_{1}+a_{2}-a_{3}-a_{4})}{3}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiti, S.K., Roy, S.K. Bi-level Programming for Stackelberg Game with Intuitionistic Fuzzy Number: a Ranking Approach. J. Oper. Res. Soc. China 9, 131–149 (2021). https://doi.org/10.1007/s40305-018-0234-2

Download citation

Keywords

  • Bi-level programming
  • Triangular intuitionistic fuzzy number
  • Ranking function
  • Nonlinear programming
  • Optimal solution

Mathematics Subject Classification

  • 90C05
  • 90C70
  • 90C30