Skip to main content
Log in

Incorporating Convexity in Bond Portfolio Immunization Using Multifactor Model: A Semidefinite Programming Approach

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Bond portfolio immunization is a classical issue in finance. Since Macaulay gave the concept of duration in 1938, many scholars proposed different kinds of duration immunization models. In the literature of bond portfolio immunization using multifactor model, to the best of our knowledge, researchers only use the first-order immunization, which is usually called as duration immunization, and no one has considered second-order effects in immunization, which is well known as “convexity” in the case of single-factor model. In this paper, we introduce the second-order information associated with multifactor model into bond portfolio immunization and reformulate the corresponding problems as tractable semidefinite programs. Both simulation analysis and empirical study show that the second-order immunization strategies exhibit more accurate approximation to the value change of bonds and thus result in better immunization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Macaulay, F.R.: Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States Since 1856. NBER Books 5(4), 474–489 (1938)

  2. Hicks, J.R.: Value and Capital, 2nd edn. Oxford University Press, London (1946)

    Google Scholar 

  3. Redington, F.M.: Review of the principles of life-office valuations. J. Inst. Actuar. 78(3), 286–340 (1952)

    Google Scholar 

  4. Samuelson, P.A.: The effect of interest rate increases on the banking system. Am. Econ. Rev. 35(1), 16–27 (1945)

    Google Scholar 

  5. Fisher, L., Weil, R.L.: Coping with the risk of interest-rate fluctuations: returns to bondholders from naive and optimal strategies. J. Bus. 44(4), 408–431 (1971)

  6. Bierwag, G.O.: Immunization, duration, and the term structure of interest rates. J. Financ. Quant. Anal. 12(5), 725–742 (1977)

    Article  Google Scholar 

  7. Bierwag, G.O., Kaufman, G.G., Khang, C.: Duration and bond portfolio analysis: an overview. J. Financ. Quant. Anal. 13(4), 671–681 (1978)

    Article  Google Scholar 

  8. Bierwag, G.O.: Dynamic portfolio immunization policies. J. Bank. Finance 3(1), 23–41 (1979)

    Article  Google Scholar 

  9. Bierwag, G.O., Khang, C.: An immunization strategy is a minimax strategy. J. Finance 34(2), 389–399 (1979)

    Article  Google Scholar 

  10. Cox, J.C., Ingersoll Jr., J.E., Ross, S.A.: Duration and the measurement of basis risk. J. Bus. 52(1), 51–61 (1979)

    Article  Google Scholar 

  11. Ingersoll, J.E., Skelton, J., Weil, R.L.: Duration forty years later. J. Financ. Quant. Anal. 13(4), 627–650 (1978)

    Article  Google Scholar 

  12. Fong, H.G., Vasicek, O.A.: A risk minimizing strategy for portfolio immunization. J. Finance 39(5), 1541–1546 (1984)

    Article  MathSciNet  Google Scholar 

  13. Lacey, N.J., Nawalkha, S.K.: Convexity, risk, and returns. J. Fixed Income 3(3), 72–79 (1993)

    Article  Google Scholar 

  14. Cooper, I.A.: Asset values, interest-rate changes, and duration. J. Financ. Quant. Anal. 12(5), 701–723 (1977)

    Article  Google Scholar 

  15. Chambers, D.R., Carleton, W.T., McEnally, R.W.: Immunizing default-free bond portfolios with a duration vector. J. Financ. Quant. Anal. 23(1), 89–104 (1988)

    Article  Google Scholar 

  16. Willner, R.: A new tool for portfolio managers: level, slope, and curvature durations (digest summary). J. Fixed Income 6(1), 48–59 (1996)

    Article  Google Scholar 

  17. Nelson, C.R., Siegel, A.F.: Parsimonious modeling of yield curves. J. Bus. 60, 473–489 (1987)

    Article  Google Scholar 

  18. Elton, E.J., Gruber, M.J., Michaely, R.: The structure of spot rates and immunization. J. Finance 45(2), 629–642 (1990)

    Article  Google Scholar 

  19. Ho, T.S.: Key rate durations: measures of interest rate risks. J. Fixed Income 2(2), 29–44 (1992)

    Article  Google Scholar 

  20. Litterman, R.B., Scheinkman, J.: Common factors affecting bond returns. J. Fixed Income 1(1), 54–61 (1991)

    Article  Google Scholar 

  21. Soto, G.M.: Duration models and irr management: A question of dimensions? J. Bank. Finance 28(5), 1089–1110 (2004)

    Article  Google Scholar 

  22. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Shang Zhu.

Additional information

This paper is dedicated to Professor Duan Li in celebration of his 65th birthday.

This research is partially supported by the National Natural Science Foundation of China (Nos. 71471180 and 71571062).

Appendix: Calculation of Duration Vector and Convexity Matrix

Appendix: Calculation of Duration Vector and Convexity Matrix

The expressions of the elements of duration vector \(\varvec{d}=\left( \frac{\partial p}{\partial \beta _0}, \frac{\partial p}{\partial \beta _1}, \frac{\partial p}{\partial \beta _2}\right) '\) can be calculated via the first-order derivation as

$$\begin{aligned} \frac{\partial p}{\partial \beta _0}= & {} -\sum \limits _t t c_t \mathrm{e}^{-R(t)t},\\ \frac{\partial p}{\partial \beta _1}= & {} -\sum \limits _t \tau c_t \mathrm{e}^{-R(t)t} \left( 1-\mathrm{e}^{-\frac{t}{\tau }}\right) ,\\ \frac{\partial p}{\partial \beta _2}= & {} -\sum \limits _t c_t \mathrm{e}^{-R(t)t} \left( \tau -\tau \mathrm{e}^{-\frac{t}{\tau }}-t \mathrm{e}^{-\frac{t}{\tau }}\right) . \end{aligned}$$

The expressions of the elements of convexity matrix

$$\begin{aligned} H=\left( \begin{array}{ccc} \frac{\partial ^2 p}{\partial \beta _0^2} &{}\quad \frac{\partial ^2 p}{\partial \beta _0\partial \beta _1} &{}\quad \frac{\partial ^2 p}{\partial \beta _0\partial \beta _2} \\ \frac{\partial ^2 p}{\partial \beta _0\partial \beta _1} &{}\quad \frac{\partial ^2 p}{\partial \beta _1^2} &{}\quad \frac{\partial ^2 p}{\partial \beta _1\partial \beta _2} \\ \frac{\partial ^2 p}{\partial \beta _0\partial \beta _2} &{}\quad \frac{\partial ^2 p}{\partial \beta _1\partial \beta _2} &{}\quad \frac{\partial ^2 p}{\partial \beta _2^2} \\ \end{array} \right) \end{aligned}$$

can be calculated via the second-order derivation as

$$\begin{aligned} \frac{\partial ^2 p}{\partial \beta _0^2}= & {} \sum \limits _t t^2 c_t \mathrm{e}^{-R(t)t},\\ \frac{\partial ^2 p}{\partial \beta _0\partial \beta _1}= & {} \sum \limits _t t \tau c_t \mathrm{e}^{-R(t)t} \left( 1-\mathrm{e}^{-\frac{t}{\tau }}\right) ,\\ \frac{\partial ^2 p}{\partial \beta _0\partial \beta _2}= & {} \sum \limits _t t c_t \mathrm{e}^{-R(t)t} \left( \tau -\tau \mathrm{e}^{-\frac{t}{\tau }}-t \mathrm{e}^{-\frac{t}{\tau }}\right) ,\\ \frac{\partial ^2 p}{\partial \beta _1^2}= & {} \sum \limits _t \tau ^2 c_t \mathrm{e}^{-R(t)t} \left( 1-\mathrm{e}^{-\frac{t}{\tau }}\right) ^2,\\ \frac{\partial ^2 p}{\partial \beta _1\partial \beta _2}= & {} \sum \limits _t \tau c_t \mathrm{e}^{-R(t)t} (1-\mathrm{e}^{-\frac{t}{\tau }})\left( \tau -\tau \mathrm{e}^{-\frac{t}{\tau }}-t \mathrm{e}^{-\frac{t}{\tau }}\right) ,\\ \frac{\partial ^2 p}{\partial \beta _2^2}= & {} \sum \limits _t c_t \mathrm{e}^{-R(t)t} \left( \tau -\tau \mathrm{e}^{-\frac{t}{\tau }}-t \mathrm{e}^{-\frac{t}{\tau }}\right) ^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhang, CH., Liu, Q. et al. Incorporating Convexity in Bond Portfolio Immunization Using Multifactor Model: A Semidefinite Programming Approach. J. Oper. Res. Soc. China 6, 3–23 (2018). https://doi.org/10.1007/s40305-018-0196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-018-0196-4

Keywords

Mathematics Subject Classification

Navigation