Skip to main content
Log in

Robust Valuation, Arbitrage Ambiguity and Profit & Loss Analysis

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2018

This article has been updated

Abstract

Model uncertainty is a type of inevitable financial risk. Mistakes on the choice of pricing model may cause great financial losses. In this paper we investigate financial markets with mean-volatility uncertainty. Models for stock market and option market with uncertain prior distributions are established by Peng’s G-stochastic calculus. On the hedging market, the upper price of an (exotic) option is derived following the Black–Scholes–Barenblatt equation. It is interesting that the corresponding Barenblatt equation does not depend on mean uncertainty of the underlying stocks. Appropriate definitions of arbitrage for super- and sub-hedging strategies are presented such that the super- and sub-hedging prices are reasonable. In particular, the condition of arbitrage for sub-hedging strategy fills the gap of the theory of arbitrage under model uncertainty. Finally we show that the term K of finite variance arising in the superhedging strategy is interpreted as the max Profit & Loss (\( \mathrm{P} \& \mathrm{L} \)) of shorting a delta-hedged option. The ask-bid spread is in fact an accumulation of the superhedging \( \mathrm{P} \& \mathrm{L}\) and the sub-hedging \( \mathrm{P} \& \mathrm{L} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. Model risk is the risk of error in our estimated risk measure due to inadequacies in our risk models [2]. Model uncertainty leads to a kind of model risk. Ambiguity on volatility is a typical case of model uncertainty.

  2. Throughout this paper, we use abbreviations a.a.: almost all; a.s.: almost surely; a.e.: almost everywhere.

  3. International Congress of Mathematicians

  4. See [42, 43] for the notion of P&L.

  5. \(C^{j,k}\left( \left( 0,T\right) \times {\mathbb {R}}\right) \) denotes the set of functions defined on \(\left( 0,T\right) \times {\mathbb {R}}\) which are j times differentiable in \(t\in \left( 0,T\right) \) and k times differentiable in \(x\in {\mathbb {R}}\) such that all these derivatives are continuous.

  6. The managing volatility is the volatility at which the option is sold.

  7. \({\mathcal {M}}{_{G}^{\mathrm {2}}}\) is the space consisting of square-integrable random variables such that the G-stochastic integral is well defined. See Appendix  A for details.

  8. An \(\left( {{\mathcal {F}}}_{t}\right) \)-progressively measurable process \(\left( M_{t}\right) \) in \({\mathcal {M}}{_{G}^{\mathrm {2}}}(0,{ T })\) is called a G-martingale under a nonlinear expectation E if for each \(t\leqslant t^{\prime }\) in \(\left[ 0,{ T }\right] \), \(M_{t}={{E}}\left[ M_{t^{\prime }}|{{\mathcal {F}}}_{t}\right] \). A G-martingale is symmetric if both \(\left( M_{t}\right) \) and \(\left( -M_{t}\right) \) are G-martingale.

  9. \(L{_{G}^{\mathrm {\beta }}}(\Omega _{T})\) is a space of \({{\mathcal {F}}}_{T}\)-measurable random variables with norm \(\Vert X\Vert _{\mathrm {\beta }}=\left( {{E}}[\left| X\right| ^{\mathrm {\beta }}]\right) ^{\frac{1}{\mathrm {\beta }}}\).

  10. The strict comparison theorem says that: For \(\xi ^{1},\xi ^{2}\in L_{G}^{1}\left( \Omega \right) \), if \(\xi ^{1}\geqslant \xi ^{2}\) and \(\underset{P\in {\mathcal {P}}}{\inf }P[\xi ^{1}>\xi ^{2}]>0\), then \({{E}}\left[ \xi ^{1}\right] >{{E}}\left[ \xi ^{2}\right] \) and \(\widetilde{{{E}}}\left[ \xi ^{1}\right] >\widetilde{{{E}}}\left[ \xi ^{2}\right] \).

  11. See [42, 43] for the definition of P&L.

References

  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dowd, K.: Measuring Market Risk, 2nd edn. Wiley, Hoboken (2005)

    Book  Google Scholar 

  3. Cont, R.: Model uncertainty and its impact on the pricing of derivative instruments. Math. Finance 16, 519–547 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Knight, F.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)

    Google Scholar 

  5. Epstein, L.G.: A definition of uncertainty aversion. Rev. Econ. Stud. 65, 579–608 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen, L., Sargent, T., Tallarini, T.: Robust permanent income and pricing. Rev. Econ. Stud. 66, 872–907 (1999)

    Article  MATH  Google Scholar 

  7. Chen, Z., Epstein, L.: Ambiguity, risk and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Epstein, L.G., Wang, L.: Uncertainty, risk neutral measures and asset price booms and crashes. J. Econ. Theory 67, 40–80 (1995)

    Article  MATH  Google Scholar 

  9. Routledge, B., Zin, S.: Model uncertainty and liquidity. Rev. Econ. Dyn. 12(4), 543–566 (2009)

    Article  Google Scholar 

  10. Dow, J., Werlang, S.: Uncertainty aversion, risk aversion, and the optimal choice of portfolio. Econometrica 60, 197–204 (1992)

    Article  MATH  Google Scholar 

  11. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Epstein, L.G., Wang, L.: Intertemporal asset pricing under Knightian uncertainty. Econometrica 62, 283–322 (1994)

    Article  MATH  Google Scholar 

  13. El Karoui, N., Ravanelli, C.: Cash sub-additive risk measures and interest rate ambiguity. Math. Finance 19(4), 561–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, Y.H.: Multidimensional dynamic risk measure via conditional g-expectation. Math. Finance 26(3), 638–673 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gundel, A.: Robust utility maximization for complete and incomplete market models. Finance Stoch. 9, 151–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Riedel, F.: Optimal stopping with multiple priors. Econometrica 77, 857–908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, Y.H.: Stochastic maximum principle for optimal control with multiple priors. Syst. Control Lett. 64, 114–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Avellaneda, M., Levy, A., Paras, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73–88 (1995)

    Article  Google Scholar 

  19. Lyons, T.: Uncertain volatility and the risk free synthesis of derivatives. Appl. Math. Finance 2, 117–133 (1995)

    Article  Google Scholar 

  20. Eberlein, E., Madan, D.B., Pistorius, M., Yor, M.: Bid and ask prices as non-linear continuous time G-expectations based on distortions. Math. Financ. Econ. 8(3), 265–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eberlein, E., Madan, D.B., Pistorius, M., Schoutens, W., Yor, M.: Two price economies in continuous time. Ann. Finance 10, 71–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Epstein, L.G., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Epstein, L.G., Ji, S.: Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26(7), 1740–1786 (2013)

    Article  Google Scholar 

  24. Madan, D.B.: A two price theory of financial equilibrium with risk management implications. Ann. Finance 8(4), 489–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Madan, D.B., Schoutens, W.: Structured products equilibria in conic two price markets. Math. Financ. Econ. 6, 37–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nutz, M., Soner, M.: Superhedging and dynamic risk measures under volatility uncertainty. SIAM J. Control Optim. 50(4), 2065–2089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vorbrink, J.: Financial markets with volatility uncertainty. J. Math. Econ. 53, 64–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heston, S.: A Closed-form solution for options with stochastic volatility with application to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  29. Martini, C.: Superreplications and stochastic control. In: 3rd Italian Conference on Mathematical Finance, Trento (1997)

  30. Frey, R.: Superreplication in stochastic volatility models and optimal stopping. Finance Stoch. 4(2), 161–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soner, H.M., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electr. J. Probab. 16, 1844–1879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Ito’s type. In: Benth, F.E., Di Nunno, G., Lindstrøm, T., Øksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications, The Abel Symposium 2005, Abel Symposia 2, pp. 541—567. Springer, New York (2006)

  34. Peng, S.: G-Brownian motion and dynamic risk measure under volatility uncertainty. arXiv:0711.2834 v1 [math.PR] (2007)

  35. Peng, S.: Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch. Process. Appl. 118, 2223–2253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peng, S.: Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A Math. 52, 1391–1411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1 [math.PR] (2010)

  38. Hu, M., Peng, S.: On representation theorem of G-expectations and paths of G-Brownian motion. Acta. Math. Appl. Sin. Engl. Ser. 25, 1–8 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem under G-expectation. Stoch. Process. Appl. 121, 265–287 (2011)

    Article  MATH  Google Scholar 

  40. Peng, S.: Backward stochastic differential equation, nonlinear expectations and their applications. In: Proceedings of the International Congress of Mathematicians. Hyderabad, India (2010)

  41. Karatzas, I., Kou, S.G.: On the pricing of contingent claims under constraints. The Annals of Applied Probability 6, 321–369 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martini, C., Jacquier, A.: Uncertain volatility model. In: Encyclopedia of Quantitative Finance. Wiley (2010) http://onlinelibrary.wiley.com/doi/10.1002/9780470061602.eqf08032/full

  43. Jacquier, A., Slaoui, S.: Variance dispersion and correlation swaps. arXiv:1004.0125v1 [q-fin.PR] (2010)

  44. Beißner, P.: Coherent price systems and uncertainty-neutral valuation. arXiv:1202.6632v1 [q-fin.GN] (2012)

  45. Osuka, E.: Girsanov’s formula for G-Brownian motion. Stoch. Process. Appl. 123(4), 1301–1318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, J., Shang, H., Zhang, B.: A Girsanov type theorem under G-framework. Stoch. Anal. Appl. 29(3), 386–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jiang, L.S., Xu, C.L., Ren, X.M., Li, S.H.: Mathematical Models and Case Study on Pricing Financial Derivatives, 1st edn. High Education Press, Beijing (2008). (Chinese version)

    Google Scholar 

  48. Meyer, G.: The Black Scholes Barenblatt equation for options with uncertain volatility and its application to static hedging. Int. J. Theor. Appl. Finance 9, 673–703 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Barenblatt, G.I.: Similarity, Self-Similarity and Intermediate Asymptotics. Consultants Bureau, New York (1979)

    Book  MATH  Google Scholar 

  50. Krylov, N.V.: Nonlinear Parabolic and Elliptic Equations of the Second Order. Reidel Publishing Company, Dordrecht (1987)

    Book  MATH  Google Scholar 

  51. Wang, L.: On the regularity of fully nonlinear parabolic equations: II. Commun. Pure Appl. Math. 45, 141–178 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Commun. Pure Appl. Math. 42, 15–45 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vargiolu, T.: Existence, uniqueness and smoothness for the Black-Scholes-Barenblatt equation. Università di Padova, Padua (2001)

    Google Scholar 

  54. Shreve, S.E.: Stochastic Calculus for Finance II: Continuous Time Models. Springer, Berlin (2004)

    MATH  Google Scholar 

  55. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equation in finance. Math. Finance 1, 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Song, Y.: Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math. 54(2), 287–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, X.: On the Strict comparison theorem for G-expectations. arXiv:1002.1765v2 [math.PR] (2010)

Download references

Acknowledgements

The author would also like to show many thanks to Prof. Shi-Ge Peng and Dr. Xin-Peng Li and other seminar participants of nonlinear expectation at Shandong University for helpful suggestions and particular thanks to Dr. Antoine Jacquier in Imperial College for discussions on the notion of P&L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hong Xu.

Additional information

This paper is dedicated to Professor Duan Li in celebration of his 65th birthday.

The author was supported by the National Natural Science Foundation of China (No.11401414) and the National Natural Science Foundation of Jiangsu Province (Nos. BK20140299 and 14KJB110022).

Appendices

Peng’s G-stochastic Calculus

In this section we recall some necessary notions and lemmas of Peng’s G-stochastic calculus needed in this paper. Readers could refer to [37] for more systematic information.

For two stochastic processes \((X_{t})\) and \((Y_{t})\), let \(\left\langle X,Y\right\rangle _{t}\) denote their mutual variance. We denote by S(n) the collection of \(n\times n\) symmetric matrices, \({{S}}_{+}(d)\) the positive-semidefinite elements of S(d). We observe that S(n) is a Euclidean space with the scalar product \(\left\langle A,B\right\rangle =tr[AB]\). Let \(\Omega \) be a complete metrizable and separable space. Typically we can take \(\Omega =C_{0}([0,+\infty ),{\mathbb {R}}^{d})\) with the topology of uniform convergence on compact subspaces. \({\mathcal {B}}(\Omega )\) denotes the Borel \(\sigma \)-algebra of \(\Omega \). Let \({{\mathcal {H}}}\) be a linear space of real functions defined on \(\Omega \) such that if \(X_{1},\cdots ,X_{n}\in {{\mathcal {H}}}\) then \(\varphi (X_{1},\cdots X_{n})\in {{\mathcal {H}}}\) for each \(\varphi \in C_{l.\mathrm{Lip}({\mathbb {R}} ^{n})}\) where \(C_{l.\mathrm{Lip}({\mathbb {R}}^{n})}\) denotes the linear space of (local Lipschitz) functions \(\varphi \) satisfying

$$\begin{aligned} |\varphi \left( x\right) -\varphi \left( y\right) |\leqslant C(1+\left| x\right| ^{m}+\left| y\right| ^{m})|x-y|,\ \quad \forall x,y\in {\mathbb {R}}^{n}, \end{aligned}$$

for some \(C>0\), \(m\in N\) depending on \(\varphi \). \({{\mathcal {H}}}\) is considered as a space of “random variables.” In this case \(X=(X_{1},\cdots ,X_{n})\) is called an n-dimensional random vector, denoted by \(X\in {\mathcal {H}}^{n}\). We also denote by \(C_{b}^{k}({\mathbb {R}}^{n})\) the space of bounded and k-time continuously differentiable functions with bounded derivatives of all orders less than or equal to k; \(C_{\mathrm{Lip}({\mathbb {R}}^{n})} \) the space of Lipschitz continuous functions.

Definition A.1

A sublinear expectation E on \({{\mathcal {H}}}\) is a functional \({{E}}:{\mathcal {H\mapsto }}{\mathbb {R}}\) satisfying the following properties: For all \(X,Y\in {{\mathcal {H}}}\), we have

  1. (a)

    Monotonicity: If \(X\geqslant Y\), then \(E[X]\geqslant E[Y]\).

  2. (b)

    Constant preserving: \(E[c]=c,\quad \forall c\in {\mathbb {R}}\).

  3. (c)

    Sub-additivity: \(E[X+Y]\leqslant {E[}X] +{E[}Y]\).

  4. (d)

    Positive homogeneity: \({E[\lambda }X{]=\lambda E[} X{]},\quad \forall \lambda \geqslant 0\).

Definition A.2

Let \(X_{1}\) and \(X_{2}\) be two n-dimensional random vectors defined on nonlinear expectation spaces \((\Omega _{1},{\mathcal {H}}_{1},{{E}}_{1})\) and \((\Omega _{2},{\mathcal {H}}_{2},{{E}}_{2})\), respectively. They are called identically distributed, denoted by \(X_{1}\overset{d}{=}X_{2}\), if

$$\begin{aligned} {{E}}_{1}[\varphi (X_{1})]={{E}}_{2}[\varphi (X_{2})],\ \quad \forall \varphi \in C_{l.\mathrm{Lip}}({\mathbb {R}}^{n}). \end{aligned}$$

Definition A.3

In a sublinear expectation space \((\Omega ,{\mathcal {H}},{{E}})\) a random vector \(Y\in {{\mathcal {H}}}^{n}\) is said to be independent of another random vector \(X\in {{\mathcal {H}}}^{m}\) under E if for each test function \(\varphi \in C_{l.\mathrm{Lip}}({\mathbb {R}}^{m+n})\) we have

$$\begin{aligned} {{E}}[\varphi (X,Y)]={{E}}\left[ {{E}}[\varphi (x,Y)]_{x=X} \right] . \end{aligned}$$

Definition A.4

(G–normal distribution). A d-dimensional random vector \(X=(X_{1},\cdots ,X_{d})\) in a sublinear expectation space \((\Omega ,{\mathcal {H}} ,{{E}})\) is called G-normal distributed if for each \(a,b>0\) we have

$$\begin{aligned} aX+b{\overline{X}}\,\overset{d}{=}\sqrt{a^{2}+b^{2}}X, \end{aligned}$$

where \({\overline{X}}\) is an independent copy of X.

Remark A.1

It is easy to check that \({{E}}[X]=\) \({{E}}[-X]=0\). The so-called G is related to \(G:{{S}}(d)\mapsto {\mathbb {R}}\) defined by

$$\begin{aligned} G\left( A\right) =\frac{1}{2}{E[}\left\langle AX,X\right\rangle {]}. \end{aligned}$$

Hu and Peng [38] proved that for a sublinear expectation E on \((\Omega ,{\mathcal {H}})\), there exists a family of linear expectation {\(E_{P};P\in {\mathcal {P}}\)} on \((\Omega ,{\mathcal {H}})\) such that \({{E}} \left[ \cdot \right] =\underset{P\in {\mathcal {P}}}{\sup }{\normalsize E} _{P}\left[ \cdot \right] \).

Definition A.5

For a given set of probability measures \({\mathcal {P}}\), we introduce the natural Choquet capacity

$$\begin{aligned} C(A):=\underset{P\in {\mathcal {P}}}{\sup }P(A),\ A\in {\mathcal {B}}(\Omega ). \end{aligned}$$

A property holds quasi-surely(q.s.) if it holds outside a polar set A, i.e., \(C(A)=0\). A mapping X on \(\Omega \) with values in a topological space is said to be quasi-continuous (q.c.) if \(\forall \varepsilon >0\), there exists an open set O with \(C(O)<\varepsilon \) such that \(X|_{O^{c}}\) is continuous.

Definition A.6

(G–Brownian motion). A d-dimensional process \((B_{t})_{t\geqslant 0}\) on a sublinear expectation space \((\Omega ,{\mathcal {H}},{{E}})\) is called a G–Brownian motion if the following properties are satisfied:

  1. (i)

    \(B_{0}(\omega )=0\);

  2. (ii)

    For each \(t,s\geqslant 0\), the increment \(B_{t+s}-B_{t}\) is independent from \((B_{t_{1}},B_{t_{2}},\cdots ,B_{t_{n}})\), for each \(n\in N\) and \(0\leqslant t_{1}\leqslant \cdots \leqslant t_{n}\leqslant t\);

  3. (iii)

    \(B_{t+s}-B_{t}\overset{d}{=}\sqrt{s}X\), where X is G-normal distributed.

In the sequence, let \(\Omega =C_{0}([0,+\infty ),{\mathbb {R}}^{d})\) denote the space of all \({\mathbb {R}}^{d}\hbox {-}\)valued continuous paths \((\omega _{t})_{t\in \mathbb {R}^{+}}\) with \(\omega _{0}=0\), by \(C_{b}(\Omega )\) all bounded and continuous functions on \(\Omega \). For each fixed \(T\geqslant 0\), we consider the following space of random variables:

$$\begin{aligned} L_{ip}(\Omega _{T}):=\{X(\omega )=\varphi (\omega _{t_{1}\wedge T},\cdots ,\omega _{t_{m}\wedge T}),\quad \forall m\geqslant 1,\forall \varphi \in C_{l.\mathrm{Lip}({\mathbb {R}}^{m} )}\}. \end{aligned}$$

We also denote

$$\begin{aligned} L_{ip}(\Omega ):=\overset{\infty }{\underset{n=1}{\cup }}L_{ip}(\Omega _{n}). \end{aligned}$$

We now take the canonical space as example to show how to find a G-Brownian motion and conditional G-expectation. Set \(B_{t}(\omega )=\omega _{t}\). For a given sublinear function \(G\left( A\right) =\frac{1}{2}\underset{\gamma \in \Gamma }{\sup }\left\{ tr[A\gamma ]\right\} \), where \(A\in {{S}}(d)\), \(\Gamma \) is a given nonempty, bounded and closed convex subset of \({{S}}_{+}(d)\). By the following

$$\begin{aligned} \partial _{t}u(t,x)-G\left( D_{x}^{2}u\right) =0,\ u(0,x)=\varphi (x), \end{aligned}$$

Peng [33] defined G-expectation E as \({{E}} [\varphi (x+B_{t})]=u(t,x)\). For each \(\mathrm {\beta }\geqslant 1\), \(X\in \mathrm{L}_\mathrm{ip}(\Omega )\), \(\Vert X\Vert _{\mathrm {\beta }}=\left( {{E}}[\left| X\right| ^{\mathrm {\beta }}]\right) ^{\frac{1}{\mathrm {\beta }}}\) forms a norm and E can be continuously extended to a Banach space, denoted by \(L{_{G}^{\mathrm {\beta }}}(\Omega )\). [38] proved that \(L{_{G}^{\mathrm {\beta }}}(\Omega )=\{X|\ X\) is \({\mathcal {B}}(\Omega )-\)measurable and has a quasi-continuous version such that \(\underset{n\rightarrow \infty }{\lim }{{E}}[\left| X\right| ^{\beta }1_{\left\{ \left| X\right| >n\right\} }]=0\}\). By the method of Markov chains, [33, 35] also defined corresponding conditional expectation, \({{E}}\left[ \cdot |\Omega _{t}\right] :L{_{G}^{\mathrm {1}}} (\Omega )\mapsto L{_{G}^{\mathrm {1}}}(\Omega _{t})\), where \(\Omega _{t}:=\left\{ \omega ._{\wedge t}:\omega \in \Omega \right\} \). Under \({{E}}\left[ \cdot \right] \), the canonical process \(B_{t}(\omega )=\omega _{t}\), \(t\in [0,\infty )\) is a G-Brownian motion.

The following properties hold for \({{E}}\left[ \cdot |\Omega _{t}\right] \) q.s.

Proposition A.1

For \(X,Y\in L{_{G}^{\mathrm {1}}}(\Omega )\), we have q.s.,

  1. (i)

    \({{E}}[\eta X|\Omega _{t}]=\eta ^{+}{{E}}[X|\Omega _{t}]+\eta ^{-}{{E}}[-X|\Omega _{t}]\), for bounded \(\eta \in L{_{G}^{\mathrm {1}} }(\Omega _{t})\).

  2. (ii)

    If \({{E}}[X|\Omega _{t}]=-{{E}}[-X|\Omega _{t}]\), for some t, then \({E[}X+Y|\Omega _{t}{]}={E[}X|\Omega _{t} {]}+{E[}Y|\Omega _{t}{]}\).

  3. (iii)

    \({E[}X+\eta |\Omega _{t}{]}={E[}X|\Omega _{t}{]}+\eta \), \(\eta \in L{_{G}^{\mathrm {1}}}(\Omega _{t})\).

For a partition of [0, T]: \(0=t_{0}<t_{1}<\cdots <t_{N}=T\) and \(\mathrm {\beta }\geqslant 1\), we set

\({{\mathcal {M}}_{G}^{\mathrm {\beta ,0}}}(0,{ T })\): the collection of processes \(\eta _{t}(\omega )=\sum _{j=0}^{N}\xi _{j}(\omega )\cdot 1_{[t_{j} ,t_{j+1}]}(t)\), where \(\xi _{j}\in L{_{G}^{\mathrm {\beta }}}(\Omega _{t_{j} }),j=0,1,\cdots ,N\);

\({\mathcal {M}}{_{G}^{\mathrm {\beta }}}(0,{ T })\): the completion of \({{\mathcal {M}}_{G}^{\mathrm {\beta ,0}}}(0,{ T })\) under norm \(||\eta ||_{{\mathcal {M}}}=\left( {{E}}\left[ \int _{0}^{T}|\eta _{t}|^{\beta }\hbox {d}t\right] \right) ^{^{\frac{1}{\beta }}}\);

\({\mathcal {H}}{_{G}^{\mathrm {\beta }}}(0,{ T })\): the completion of \({{\mathcal {M}}_{G}^{\mathrm {\beta ,0}}}(0,{ T })\) under norm \(||\eta ||_{{\mathcal {H}}}=\left( {{E}}\left( \int _{0}^{T}|\eta _{t} |^{2}\hbox {d}t\right) ^{\frac{\beta }{2}}\right) ^{\frac{1}{\beta }}\). It is easy to prove that \({\mathcal {H}}{_{G}^{\mathrm {2}}}(0,{ T })={\mathcal {M}} {_{G}^{\mathrm {2}}}(0,{ T })\).

For any \(\left( \eta _{t}\right) \in {\mathcal {M}}{_{G}^{\mathrm {2}}}\), G-Itô integral is well defined in [33, 35] and extended to \({\mathcal {H}}{_{G}^{\mathrm {\beta }}}\) by [56].

BSDE with Linear Generator and Driven by G-Brownian Motion

We define \(D_{t}={\normalsize \exp }\left\{ -{\normalsize \int _{0}^{t}r_{s}\mathrm{d}s}\right\} \). Then \(D_{t}\) satisfies

$$\begin{aligned} \mathrm{d}D_{t}=-D_{t}r_{t}\hbox {d}t\text {, and }D_{t=0}=1. \end{aligned}$$

Consider the following one-dimensional BSDE with linear generator and driven by one-dimensional G-Brownian motion:

$$\begin{aligned} \left\{ \begin{array} [c]{l} dY_{t} =\left( r_{t}Y_{t}-\phi _{t}\right) \hbox {d}t+Z_{t}\hbox {d}B_{t}-\hbox {d}K_{t} , \mathrm{q.s.}, \\ Y_{T} =\xi ., \end{array} \right. \end{aligned}$$
(B.1)

where \(\xi \in L{_{G}^{\mathrm {\beta }}}(\Omega _{T})\), \(\beta >1\), \(r_{t}\) and \(\phi _{t}\) are \({\mathcal {F}}_{t}\)-measurable bounded processes belonging to \({{\mathcal {M}}_{G}^{\mathrm {\beta }}}\).

Definition B.1

A solution to BSDE (B.1) is a triple of adapted processes \((Y_{t},Z_{t},K_{t})\), where \((K_{t})\) is a continuous, increasing process with \(K_{0}=0\) and \((-K_{t})\) being a G-martingale.

For BSDE (B.1), we have the following result.

Theorem B.1

There is a unique triple \((Y_{t},Z_{t},K_{t})\) satisfying (B.1) with \(Y\in {{\mathcal {M}}_{G}^{\mathrm {\beta }}}\), \(Z\in {\mathcal {H}}{_{G}^{\mathrm {\alpha }}}\) and \(K_{T}\in L{_{G}^{\mathrm {\alpha }} }(\Omega _{T})\), \(1\leqslant \alpha <\beta \), \(\beta >1\). Furthermore we have q.s.,

$$\begin{aligned} Y_{t}=D_{t}^{-1}{{E}}\left[ D_{T}\xi +\int _{t}^{T}D_{s}\phi _{s}\mathrm{d}s|{\mathcal {F}}_{t}\right] .\ \end{aligned}$$
(B.2)

Proof

Consider the following BSDE under sublinear expectation E:

$$\begin{aligned} Y_{t}={{E}}\left[ \xi -\int _{t}^{T}\left( r_{s}Y_{s}-\phi _{s}\right) \mathrm{d}s|{\mathcal {F}}_{t}\right] . \end{aligned}$$
(B.3)

By the technique of contracting mapping principle employed in [37], Ch.V, Sect. 2, one can similarly prove that there is a unique solution \(Y\in {{\mathcal {M}}_{G}^{\mathrm {\beta }}}\) to BSDE (B.3). Applying martingale representation theorem established in [56], there is a unique pair (ZK) with \(Z\in {{\mathcal {M}} _{G}^{\mathrm {\alpha }}}\) and \(K_{T}\in L{_{G}^{\mathrm {\alpha }}}(\Omega _{T})\), \(1\leqslant \alpha <\mathrm {\beta }\) such that

$$\begin{aligned} {{E}}\left[ \xi -\int _{0}^{T}\left( r_{s}Y_{s}-\phi _{s}\right) \mathrm{d}s|{\mathcal {F}}_{t}\right] =Y_{0}+\int _{0}^{t}Z_{s}\hbox {d}B_{s}-K_{t},\ \mathcal {P}\hbox {-} q.s. \end{aligned}$$

Hence

$$\begin{aligned} Y_{t}&={{E}}\left[ \xi -\int _{0}^{T}\left( r_{s}Y_{s}-\phi _{s}\right) \mathrm{d}s|{\mathcal {F}}_{t}\right] +\int _{0}^{t}\left( r_{s}Y_{s} -\phi _{s}\right) \mathrm{d}s\\&=Y_{0}++\int _{0}^{t}\left( r_{s}Y_{s}-\phi _{s}\right) \mathrm{d}s+\int _{0} ^{t}Z_{s}\hbox {d}B_{s}-K_{t},\ \mathcal {P}\hbox {-}q.s., \end{aligned}$$

or in backward form

$$\begin{aligned} Y_{t}=\xi -\int _{t}^{T}\left( r_{s}Y_{s}-\phi _{s}\right) ds-\int _{t}^{T} Z_{s}\hbox {d}B_{s}+\int _{t}^{T}\hbox {d}K_{s},\ \mathcal {P}\hbox {-}q.s. \end{aligned}$$

Thus the triple \((Y_{t},Z_{t},K_{t})\) constructed by above procedure is a solution of (B.1).

Applying Itô’s formula to \(D_{t}Y_{t}\), we have

$$\begin{aligned} \mathrm{d}(D_{t}Y_{t})&=D_{t}\left[ \left( r_{t}Y_{t}-\phi _{t}\right) \hbox {d}t+Z_{t}\hbox {d}B_{t}-\hbox {d}K_{t}\right] -Y_{t}D_{t}r_{t}\hbox {d}t\\&=-D_{t}\phi _{t}\hbox {d}t+D_{t}Z_{t}\hbox {d}B_{t}-D_{t}\hbox {d}K_{t}. \end{aligned}$$

Note that \((D_{t}Y_{t}+\int _{0}^{t}D_{s}\phi _{s}\mathrm{d}s)\) is a G-martingale. Hence

$$\begin{aligned} D_{t}Y_{t}&={{E}}\left[ D_{T}\xi +\int _{0}^{T}D_{s}\phi _{s}\mathrm{d}s|{\mathcal {F}}_{t}\right] -\int _{0}^{t}D_{s}\phi _{s}\mathrm{d}s\\&={{E}}\left[ D_{T}\xi +\int _{t}^{T}D_{s}\phi _{s}\mathrm{d}s|{\mathcal {F}} _{t}\right] . \end{aligned}$$

Therefore the solution of (B.1) has the following unique form:

$$\begin{aligned} Y_{t}=D_{t}^{-1}{{E}}\left[ D_{T}\xi +\int _{t}^{T}D_{s}\phi _{s}\mathrm{d}s|{\mathcal {F}}_{t}\right] . \end{aligned}$$

Let \(Y^{i}\) be the solution of (B.1) with parameters \(\left( \xi ^{i},\phi ^{i}\right) \), \(i=1,2\). It is interesting that (\(Y^{1}+Y^{2}\)) is no longer a solution of (B.1) with parameters \(\left( \xi ^{1}+\xi ^{2},\phi ^{1}+\phi ^{2}\right) \), though BSDE (B.1) has a linear generator. All attributes to the sublinearity. \((-K_{t}^{1}-K_{t}^{2})\) is no more a G-martingale. We have the following:

Corollary B.1

Let \({\widetilde{Y}}\) be the solution of (B.1) with parameters \(\left( \xi ^{1}+\xi ^{2},\phi ^{1}+\phi ^{2}\right) \). Then

$$\begin{aligned} Y^{1}+Y^{2}\geqslant {\widetilde{Y}}. \end{aligned}$$

Proof

It is just a sequence of (B.2) and the sublinearity of G-expectation E.

This property reflects that if two agents cooperate with each other, then superhedging the whole might yield less pricing error.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YH. Robust Valuation, Arbitrage Ambiguity and Profit & Loss Analysis. J. Oper. Res. Soc. China 6, 59–83 (2018). https://doi.org/10.1007/s40305-017-0181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-017-0181-3

Keywords

Mathematics Subject Classification

Navigation