Skip to main content
Log in

On application of the univariate Kotz distribution and some of its extensions

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Despite a flourishing activity, especially in recent times, for the study of flexible parametric classes of distributions, little work has dealt with the case where the tail weight and degree of peakedness is regulated by two parameters instead of a single one, as it is usually the case. The present contribution starts off from the symmetric distributions introduced by Kotz in 1975, subsequently evolved into the so-called Kotz-type distribution, and builds on their univariate versions by introducing a parameter which allows for the presence of asymmetry. We study some formal properties of these distributions and examine their practical usefulness in some real-data illustrations, considering both symmetric and asymmetric variants of the distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Amoroso, L.: Ricerche intorno alla curva dei redditi. Annali di Matematica Pura ed Applicata 2, 123–159 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzalini, A.: Further results on a class of distributions which includes the normal ones. Statistica XLVI(2), 199–208 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Azzalini, A.: The R package sn: The Skew-Normal and Skew-t distributions (version 1.3-0). (2015). http://azzalini.stat.unipd.it/SN

  4. Azzalini, A., With the collaboration of Capitanio, A.: The Skew-Normal and Related Families. IMS monographs. Cambridge University Press, Cambridge (2014)

  5. Bowman, A.W., Azzalini, A.: Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  6. Bowman, A. W., Azzalini, A.: The R package sm: nonparametric smoothing methods (version 2.2-5.4). University of Glasgow, UK and Università di Padova, Italia (2014)

  7. Fang, K.-T., Kotz, S., Ng, K.W.: Symmetric multivariate and related distributions. Chapman & Hall, London (1990)

    Book  MATH  Google Scholar 

  8. Flecher, C., Allard, D., Naveau, P.: Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data. Metron. LXVIII, 331–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbert, P., Varadhan, R.: The R package numDeriv: Accurate Numerical Derivatives (version 2014.2–1) (2015). https://CRAN.R-project.org/package=numDeriv

  10. Hallin, M., Ley, C.: Skew-symmetric distributions and Fisher information—a tale of two densities. Bernoulli 18, 747–763 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, M.C.: On families of distributions with shape parameters (with discussion). Int. Stat. Rev. 83(2), 175–227 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kotz, S.: Multivariate distributions at a cross-road. In: Patil, G.P., Kotz, S., Ord, J.K. (eds.) Statistical Distributions in Scientific Work, pp. 247–270. D. Reidel Publishing Company, Dordrecht (1975)

    Chapter  Google Scholar 

  13. Ley, C.: Flexible modelling in statistics: past, present and future. Journal de la Société Française de Statistique 156, 76–96 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Martínez, E.H., Varela, H., Gómez, H.W., Bolfarine, H.: A note on the likelihood and moments of the skew-normal distribution. SORT 32(1), 57–66 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim, An R package for global optimization by differential evolution. J. Stat. Softw. 40(6) (2011). http://www.jstatsoft.org/v40/i06/

  16. Nadarajah, S.: The Kotz-type distribution with applications. Statistics 37(4), 341–358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pewsey, A.: Some observations on a simple means of generating skew distributions. In: Balakrishnan, N., Castillo, E., Sarabia, J.M. (eds.) Advances in Distribution Theory, Order Statistics and Inference, pp. 75–84. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  18. R Core Team, R.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/.

  19. Shin, J.W., Chang, J.-H., Kim, N.S.: Statistical modeling of speech signals based on generalized gamma distribution. IEEE Signal Process. Lett. 12, 258–261 (2005)

    Article  Google Scholar 

  20. Stacy, E.W.: A generalization of the gamma distribution. Ann. Math. Stat. 33, 1187–1192 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Subbotin, M.T.: On the law of frequency of error. Matematicheskii Sbornik 31, 296–301 (1923)

    MATH  Google Scholar 

  22. Umbach, D.: Some moment relationships for skew-symmetric distributions. Stat. Probab. Lett. 76(5), 507–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Umbach, D.: The effect of the skewing distribution on skew-symmetric families. Soochow J. Math. 33, 657–668 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for a set of comments to an earlier version of the paper, leading to a better presentation of the material. This work was started when the first author was visiting the Department of Statistical Sciences, University of Padua, Italy, and completed while he was at the Ferdowsi University of Mashhad, Iran; the support of these institutions is gratefully acknowledged. We are grateful to Francesco Lisi for kindly providing the S&P data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Salehi.

Appendix: Some proofs

Appendix: Some proofs

Proof of Proposition 2.2

To prove the first equation, consider

$$\begin{aligned} E\left( Z_{\rho ,G,w}^{2k+1}\right)= & {} \int _{-\infty }^{+\infty }2\,z^{2k+1}f_K(z;\rho )G\{w(z)\}\mathrm {d}{z}\nonumber \\= & {} \frac{\sqrt{\pi }2^{1-\rho }}{\Gamma \left( \rho -\frac{1}{2}\right) }\int _{-\infty }^{+\infty }2\,z\left( z^2\right) ^{k+\rho -1}\varphi (z) G\{w(z)\}\mathrm {d}{z}\nonumber \\= & {} \frac{\Gamma (\rho +k-\frac{1}{2})2^k}{\Gamma \left( \rho -\frac{1}{2}\right) } E\left( Z_{\rho +k,G,w}\right) . \end{aligned}$$
(30)

For the second one, we have

$$\begin{aligned} E\left( Z_{\rho +k,G,w}\right)= & {} \frac{\sqrt{\pi }2^{1-\rho -k}}{\Gamma \left( \rho +k-\frac{1}{2}\right) }\int _{-\infty }^{+\infty }2\,z\,|z|^{2\rho +2k-2}\varphi (z) G\{w(z)\}\mathrm {d}{z}\\= & {} \frac{\sqrt{\pi }2^{1-\rho -k}}{\Gamma \left( \rho +k-\frac{1}{2}\right) }\left( \int _{-\infty }^{0}2\,z\,(-z)^{2\rho +2k-2}\varphi (z) G\{w(z)\}\mathrm {d}{z}\right. \\&\left. +\int _{0}^{+\infty }2\,z\,z^{2\rho +2k-2}\varphi (z) G\{w(z)\}\mathrm {d}{z}\right) . \end{aligned}$$

By the change of variable \(u=-z\) and the fact that \(w(-u)=-w(u)\), we get

$$\begin{aligned} E\left( Z_{\rho +k,G,w}\right)= & {} \frac{\sqrt{\pi }2^{1-\rho -k}}{\Gamma \left( \rho +k-\frac{1}{2}\right) }\left( -\int _{0}^{+\infty }u^{2\rho +2k-1}2\varphi (u)\left( 1-G\{w(u)\}\right) \mathrm {d}{u}\right. \nonumber \\&\left. +\int _{0}^{+\infty }z^{2\rho +2k-1}2\varphi (z) G\{w(z)\}\mathrm {d}{z}\right) \nonumber \\= & {} \frac{\sqrt{\pi }2^{2-\rho -k}}{\Gamma \left( \rho +k-\frac{1}{2}\right) }\left( E\left\{ |U|^{2(\rho +k)-1}G\left( w\left( |U|\right) \right) \right\} -\frac{1}{2}E|U|^{2(\rho +k)-1}\right) \nonumber \\= & {} \frac{\sqrt{\pi }2^{2-\rho -k}}{\Gamma \left( \rho +k-\frac{1}{2}\right) }\left( E\left\{ |U|^{2(\rho +k)-1}G\left( w\left( |U|\right) \right) \right\} {-}\frac{1}{\sqrt{\pi }}\Gamma (k+\rho )2^{k+\rho -3/2}\right) , \nonumber \\ \end{aligned}$$
(31)

where \(U\sim N(0,1)\); for the last equality sign, the moments of \(U^2\sim \chi ^2_1\) have been used. Finally, substitution of (31) in (30) completes the proof.

Proof of Proposition 2.7

Substituting \(F_K(\cdot ;\rho )\) instead of \(G(\cdot )\) and \(\lambda x\) instead of w(x) in (12) yields

$$\begin{aligned} E\left( Z_{\rho ,\lambda }^{*2k+1}\right)= & {} \frac{\sqrt{\pi }2^{2-\rho }}{\Gamma \left( \rho -\frac{1}{2}\right) }\left( \frac{1}{2}E|U|^{2(\rho +k)-1}+\frac{\mathrm {sign}(\lambda )}{2\Gamma \left( \rho -\frac{1}{2}\right) }\right. \\&\times \left. E\left\{ |U|^{2(\rho +k)-1}\gamma \left( \rho -\frac{1}{2},\frac{\lambda ^2U^2}{2}\right) \right\} \right) -\frac{\Gamma (\rho +k)2^{k+\frac{1}{2}}}{\Gamma \left( \rho -\frac{1}{2}\right) }\\= & {} \frac{\mathrm {sign}(\lambda )\sqrt{\pi }2^{2-\rho }}{2\Gamma ^2\left( \rho -\frac{1}{2}\right) }\int ^{+\infty }_{0}u^{2(\rho +k)-1}\gamma \left( \rho -\frac{1}{2},\frac{\lambda ^2u^2}{2}\right) 2\varphi (u)\mathrm {d}{u}. \end{aligned}$$

By the change of variable \(t=\frac{\lambda ^2u^2}{2}\), we conclude that

$$\begin{aligned} E\left( Z_{\rho ,\lambda }^{*2k+1}\right)= & {} \frac{\mathrm {sign}(\lambda )2^{k+\frac{1}{2}}}{\Gamma ^2\left( \rho -\frac{1}{2}\right) \lambda ^{2(\rho +k)}}\int ^{+\infty }_{0}t^{\rho +k-1}\gamma \left( \rho -\frac{1}{2},t\right) e^{-\frac{t}{\lambda ^2}}\mathrm {d}{u}\\= & {} \frac{\mathrm {sign}(\lambda )2^{k+\frac{1}{2}}}{\Gamma ^2\left( \rho -\frac{1}{2}\right) \lambda ^{2(\rho +k)}}\frac{\Gamma \left( 2\rho +k-\frac{1}{2}\right) }{\left( \rho -\frac{1}{2}\right) \left( 1+\frac{1}{\lambda ^2}\right) ^{2\rho +k-\frac{1}{2}}} \\&\times ~{}_{2}F_1\left( 1,2\rho +k-\frac{1}{2};\rho +\frac{1}{2};\frac{\lambda ^2}{1+\lambda ^2}\right) , \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Azzalini, A. On application of the univariate Kotz distribution and some of its extensions. METRON 76, 177–201 (2018). https://doi.org/10.1007/s40300-018-0137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-018-0137-3

Keywords

Navigation