Bounding Homotopy Method for Minimum-Time Low-Thrust Transfer in the Circular Restricted Three-Body Problem

Abstract

Solving minimum-time low-thrust orbital transfer problems in the three-body problem by indirect methods is an extremely difficult task, which is mainly due to the small convergence domain of the optimal solution and the highly nonlinear nature associated with the three-body problem. Homotopy methods, the principle of which is to embed a given problem into a family of problems parameterized by a homotopic parameter, have been utilized to address this difficulty. However, it is not guaranteed that the optimal solution of the original problem can be obtained by most of the existing homotopy methods. In this paper, a new bounding homotopy method is proposed, by which the continuous homotopy path can be constructed and the optimal solution of the original problem is guaranteed to be found. In the parameter bounding homotopy method, an initialized problem with much higher thrust is constructed and a state-of-the-art parameter bounding homotopy approach is utilized to connect separated homotopy branches outside the predefined domain of the homotopic parameter. Furthermore, multiple optimal solutions of the original problem can be obtained if the homotopic approach continues after the first solution, among which the best solution can be figured out. Finally, numerical solutions of minimum-time low-thrust orbital transfers from GEO to Moon orbit and from GTO to halo orbit in the circular restricted three-body problem are provided to demonstrate the effectiveness of the homotopy method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Rayman, M. D., Varghese, P., Lehman, D. H., Livesay, L. L.: Results from the Deep Space 1 technology validation mission. Acta Astronaut. 47(2), 475–487 (2000)

    Article  Google Scholar 

  2. 2.

    Kawaguchi, J., Fujiwara, A., Uesugi, T. K.: The ion engines cruise operation and the Earth swingby of ‘Hayabusa’(MUSES-C). In: 55th International Astronautical Congress, IAC Paper, pp 4–8 (2004)

  3. 3.

    Kugelberg, J., Bodin, P., Persson, S., Rathsman, P.: Accommodating electric propulsion on SMART-1. Acta Astronaut. 55(2), 121–130 (2004)

    Article  Google Scholar 

  4. 4.

    Benkhoff, J., Casteren, J. V., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., Ziethe, R.: BepiColombo-comprehensive exploration of Mercury: Mission overview and science goals. Planetary & Space Science 58(1), 2–20 (2010)

    Article  Google Scholar 

  5. 5.

    Li, S., Zhu, Y., Wang, Y.: Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions. Adv. Space Res. 53(4), 696–707 (2014)

    Article  Google Scholar 

  6. 6.

    Taheri, E., Abdelkhalik, O.: Initial three-dimensional low-thrust trajectory design. Adv. Space Res. 57(3), 889–903 (2016)

    Article  Google Scholar 

  7. 7.

    Oshima, K., Campagnola, S., Yanao, T.: Global search for low-thrust transfers to the Moon in the planar circular restricted three-body problem. Celestial Mechanics & Dynamical Astronomy 128(2-3), 303–322 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kluever, C. A.: Optimal Earth-Moon trajectories using combined chemical-electric propulsion. J Guid Control Dyn 20(2), 253–258 (1997)

    MATH  Article  Google Scholar 

  9. 9.

    Betts, J. T., Erb, S. O.: Optimal low thrust trajectories to the Moon. Siam Journal on Applied Dynamical Systems 516(2), 144–170 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Herman, A. L., Conway, B. A.: Optimal, low-thrust, Earth-Moon orbit transfer. J Guid Control Dyn 21(1), 141–147 (1996)

    MATH  Article  Google Scholar 

  11. 11.

    Park, C., Gong, Q., Ross, I., Sekhavat, P.: Fuel-optimal design of Moon-Earth trajectories using legendre pseudospectral method. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2008)

  12. 12.

    Yan, H., Wu, H.: Optimal low-thrust Earth-Moon targeting strategy for n-body problem. J Guid Control Dyn 24(3), 626–628 (2001)

    Article  Google Scholar 

  13. 13.

    Mingotti, G., Topputo, F., Bernellizazzera, F.: Optimal low-thrust invariant manifold trajectories via attainable sets. J Guid Control Dyn 34(6), 1644–1656 (2011)

    Article  Google Scholar 

  14. 14.

    Bryson, A. E., Ho, Y. C.: Applied optimal control. Hemosphere, Washington D.C. (1975)

  15. 15.

    Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    Google Scholar 

  16. 16.

    Taheri, E., Li, N. I., Kolmanovsky, I.: Co-state initialization for the minimum-time low-thrust trajectory optimization. Adv. Space Res. 59(9), 2360–2373 (2017)

    Article  Google Scholar 

  17. 17.

    Guo, C., Zhang, J., Luo, Y., Yang, L.: Phase-matching homotopic method for indirect optimization of long-duration low-thrust trajectories. Adv. Space Res. 62(3), 568–579 (2018)

    Article  Google Scholar 

  18. 18.

    Kluever, C. A., Pierson, B. L.: Optimal low-thrust three-dimensional Earth-moon trajectories. J Guid Control Dyn 18(4), 830–837 (1995)

    Article  Google Scholar 

  19. 19.

    Kluever, C. A., Pierson, B. L.: Optimal Earth-Moon trajectories using nuclear electric propulsion. J Guid Control Dyn 20(2), 239–245 (1997)

    Article  Google Scholar 

  20. 20.

    Gao, Y.: Earth-moon trajectory optimization using solar electric propulsion. Chin. J. Aeronaut. 20(5), 452–463 (2007)

    Article  Google Scholar 

  21. 21.

    Russell, R. P.: Primer vector theory applied to global low-thrust trade studies. J Guid Control Dyn 30(2), 460–472 (2007)

    Article  Google Scholar 

  22. 22.

    Howell, K. C., Ozimek, M. T.: Low-Thrust transfers in the Earth-Moon system, including applications to libration point orbits. J Guid Control Dyn 33(2), 533–549 (2008)

    Google Scholar 

  23. 23.

    Lee, D., Bang, H., Kim, H. D.: Optimal Earth-Moon trajectory design using new initial costate estimation method. J Guid Control Dyn 35(5), 1671–1676 (2012)

    Article  Google Scholar 

  24. 24.

    Watson, L. T.: Probability-one homotopies in computational science. Journal of Computational & Applied Mathematics 140(1), 785–807 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Guo, T., Fanghua, J., Junfeng, L.: Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronaut. 71 (2012), 38–50 (2012)

    Article  Google Scholar 

  26. 26.

    Pan, B., Lu, P., Pan, X., Ma, Y.: Double-homotopy method for solving optimal control problems. J Guid Control Dyn 39(8), 1–15 (2016)

    Article  Google Scholar 

  27. 27.

    Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation. Optimal Control Applications & Methods 23(4), 171–197 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Caillau, J. B., Daoud, B.: Minimum time control of the restricted three-body problem. SIAM J. Control. Optim. 50(6), 3178–3202 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Caillau, J. B., Farrés, A: On Local Optima In Minimum Time Control of the Restricted Three-Body Problem, pp 209–302. Springer International Publishing, Cham (2016)

    Google Scholar 

  30. 30.

    Caillau, J. B., Daoud, B., Gergaud, J.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114(1), 137–150 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y. S.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J Guid Control Dyn 38(8), 1501–1509 (2015)

    Article  Google Scholar 

  32. 32.

    Tang, G., Jiang, F.: Capture of near-Earth objects with low-thrust propulsion and invariant manifolds. Astrophysics & Space Science 361(10), 9–22 (2016)

    MathSciNet  Google Scholar 

  33. 33.

    Pèrez-Palau, D., Epenoy, R.: Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control. Celest. Mech. Dyn. Astron. 130(2), 21 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Malinen, I., Tanskanen, J.: Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies. Computers & Chemical Engineering 34(11), 1761–1774 (2010)

    Article  Google Scholar 

  35. 35.

    Pan, B., Pan, X., Lu, P.: Finding best solution in low-thrust trajectory optimization by two-phase homotopy. Journal of Spacecrafts & Rockets 56(1), 283–291 (2019)

    Article  Google Scholar 

  36. 36.

    Caillau, J. B., Gergaud, J., Noailles, J.: 3D geosynchronous transfer of a satelite: continuation on the thrust. J. Optim. Theory Appl. 118(3), 541–565 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Gergaud, J., Haberkorn, T.: Homotopy method for minimum consumption orbit transfer problem. Esaim Control Optimisation & Calculus of Variations 12(2), 294–310 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J Guid Control Dyn 35(1), 245–258 (2012)

    Article  Google Scholar 

  39. 39.

    Chen, Z.: Optimality conditions applied to free-time multi-burn optimal orbital transfers. J Guid Control Dyn 39(11), 2512–2521 (2016)

    Article  Google Scholar 

  40. 40.

    Taheri, E., Kolmanovsky, I., Atkins, E.: Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories. J Guid Control Dyn 39(11), 2500–2511 (2016)

    Article  Google Scholar 

  41. 41.

    Chi, Z., Yang, H., Chen, S., Li, J.: Homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Astrophysics & Space Science 362 (11), 216 (2017)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Zhao, S., Zhang, J., Xiang, K., Qi, R.: Target sequence optimization for multiple debris rendezvous using low thrust based on characteristics of SSO. Astrodynamics 1(1), 85–99 (2017)

    Article  Google Scholar 

  43. 43.

    Pan, B., Pan, X., Ma, Y.: A quadratic homotopy method for fuel-optimal low-thrust trajectory design. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering 232(5), 1741–1757 (2019)

    Article  Google Scholar 

  44. 44.

    Paloschi, J. R.: Bounded homotopies to solve systems of algebraic nonlinear equations. Computers & Chemical Engineering 19(12), 1243–1254 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support to this work by the National Natural Science Foundation of China (Grant No. 11672234).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Binfeng Pan.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Pan, B. & Li, Z. Bounding Homotopy Method for Minimum-Time Low-Thrust Transfer in the Circular Restricted Three-Body Problem. J Astronaut Sci (2020). https://doi.org/10.1007/s40295-020-00213-4

Download citation

Keywords

  • Trajectory optimization
  • Low-thrust
  • Homotopy method
  • Three-body problem