Aspects of Pulsar Navigation for Deep Space Mission Applications


This paper investigates the performance of pulsar-based navigation in deep space mission applications. The noise properties of X-ray based and radio-baspulsar measurements are examined and compared. A closed form parametric covariance analysis tool was developed in this study. It provides a rough estimate of the navigation performance associated with a deep space cruise that makes use of ion thrusters and sequential pulsar observations. In addition, the flight trajectory of the Dawn spacecraft was used to form a hypothetical deep space mission scenario that utilizes pulsars as navigation beacons. This simulated scenario accounts for clock uncertainty, pulsar timing noise, maneuver execution errors, sequential observation and interruptions between pulsar observations. A particle filter was implemented to reduce the large initial position uncertainty by resolving the number of pulsar wavelengths between the spacecraft and the Solar System Barycenter. The resulting position and velocity uncertainties from the particle filter can be used to initialize an Extended Kalman Filter, which estimates the spacecraft position and velocity for steady state operations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002).

    Article  Google Scholar 

  2. 2.

    Bailes, M.: The art of precision pulsar timing. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in fundamental astronomy: Dynamics, reference frames, and data analysis, IAU symposium, vol. 261, pp. 212–217. (2010)

  3. 3.

    Becker, W., Bernhardt, M. G., Jessner, A.: Autonomous spacecraft navigation with pulsars. (2013)

  4. 4.

    Bregni, S.: Synchronization of digital telecommunications networks, vol. 27. Wiley, New York (2002).

    Book  Google Scholar 

  5. 5.

    Campbell, D.B.: Measurement in radio astronomy. In: Stanimirovic, S., Altschuler, D., Goldsmith, P., Salter, C. (eds.) Single-dish radio astronomy: Techniques and applications, astronomical society of the pacific conference series, vol. 278, pp. 81–90 (2002)

  6. 6.

    Charef, A., Sun, H., Tsao, Y., Onaral, B.: Fractal System as Represented by Singularity Function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chen, P. T., Speyer, J. L., Bayard, D. S., Majid, W. A.: Autonomous navigation using x-ray pulsars and multirate processing. J. Guid. Control Dynam. 40(9), 2237–2249 (2017).

    Article  Google Scholar 

  8. 8.

    Coles, W., Hobbs, G., Champion, D., Manchester, R., Verbiest, J.: Pulsar Timing Analysis in the Presence of Correlated Noise. Mon. Not. R. Astron. Soc. 418(1), 561–570 (2011).

    Article  Google Scholar 

  9. 9.

    Edwards, R., Hobbs, G., Manchester, R.: TEMPO2, A new pulsar timing package–II. The Timing Model and Precision Estimates. Mon. Not. R. Astron. Soc. 372(4), 1549–1574 (2006).

    Article  Google Scholar 

  10. 10.

    Emadzadeh, A. A., Speyer, J. L.: Navigation in space by x-ray pulsars. Springer, New York (2011).

    Book  Google Scholar 

  11. 11.

    Gates, C. R.: A simplified model of midcourse maneuver execution errors. Tech Rep. 32-504, Jet Propulsion Laboratory, California Institute of Technology (1963)

  12. 12.

    Golshan, A. R., Sheikh, S. I.: On pulse phase estimation and tracking of variable celestial x-ray sources. In: Proceedings of the 63rd annual meeting of the institute of navigation, pp. 413–422 (2001)

  13. 13.

    Hobbs, G., Edwards, R., Manchester, R.: TEMPO2, a new pulsar-timing package–i. an overview. Mon. Not. R. Astron. Soc. 369(2), 655–672 (2006).

    Article  Google Scholar 

  14. 14.

    Hwang, S. S., Speyer, J. L.: Particle filters with adaptive resampling technique applied to relative positioning using GPS carrier-phase measurements. IEEE Trans. Control Syst. Technol. 19(6), 1384–1396 (2010).

    Article  Google Scholar 

  15. 15.

    Irwin, A. W., Fukushima, T.: A Numerical Time Ephemeris of the Earth. Astron. Astrophys. 348, 642–652 (1999)

    Google Scholar 

  16. 16.

    Jodrell Bank Observatory: The European Pulsar Network Data Archive. [Online Database].

  17. 17.

    Kardashev, N., Kovalev, Y., Kellermann, K.: Radioastron: An earth-space radio interferometer with a 350,000 km baseline. URSI Radio Sci. Bull. 2012(343), 22–29 (2012)

    Google Scholar 

  18. 18.

    Liu, J., Ma, J., Tian, J., Kang, Z., White, P.: Pulsar navigation for interplanetary missions using CV model and ASUKF. Aerosp. Sci. Technol. 22(1), 19–23 (2012)

    Article  Google Scholar 

  19. 19.

    Lorimer, D. R., Kramer, M.: Handbook of pulsar astronomy, vol. 4. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  20. 20.

    Manchester, R., Hobbs, G., Teoh, A., Hobbs, M.: The Australia telescope national facility pulsar catalogue. The Astronomical Journal 129(4), 1993 (2005)

    Article  Google Scholar 

  21. 21.

    Mitchell, J. W., Winternitz, L. M., Hassouneh, M. A., Price, S. R., Semper, S. R., Yu, W. H., Ray, P. S., Wolff, M. T., Kerr, M., Wood, K. S., et al.: Sextant x-ray pulsar navigation demonstration: Initial on-orbit results. In: Proceedings of the advances in the astronautical sciences guidance, navigation and control 2018, vol. 164 (2018)

  22. 22.

    NASA: Planetary and lunar ephemerides. [Online Database] (2015).

  23. 23.

    Oaks, O. J., McCaskill, T. B., Largay, M. M., Reid, W. G., Buisson, J. A.: Performance of GPS on-orbit NAVSTAR frequency standards and monitor station time references. In: Proceedings of the 30th annual precise time and time interval (PTTI) meeting (1998)

  24. 24.

    Ray, P., Wood, K., Phlips, B.: Spacecraft Navigation Using X-Ray Pulsars. Tech. Rep., Naval Research Laboratory, E. O. Hulburt Center for Space Research (2006)

  25. 25.

    Rayman, M.D., Mase, R.A.: Dawn’s operations in cruise from vesta to ceres. Acta Astronautica 103, 113–118 (2014).

    Article  Google Scholar 

  26. 26.

    Reardon, D., Hobbs, G., Coles, W., Levin, Y., Keith, M., Bailes, M., Bhat, N., Burke-Spolaor, S., Dai, S., Kerr, M., et al.: Timing analysis for 20 millisecond pulsars in the parkes pulsar timing array. Mon. Not. R. Astron. Soc. 455(2), 1751–1769 (2015).

    Article  Google Scholar 

  27. 27.

    Russell, C., Raymond, C.: The dawn mission to minor planets 4 vesta and 1 ceres. Springer Science & Business Media.

  28. 28.

    Sala, J., Urruela, A., Villares, X., Estalella, R., Paredes, J. M.: Feasibility study for a spacecraft navigation system relying on pulsar timing information. ARIADNA Study 3(4202.2003), 6 (2004)

    Google Scholar 

  29. 29.

    Sheikh, S. I., Hanson, J. E., Graven, P. H., Pines, D. J.: Spacecraft navigation and timing using x-ray pulsars. Navigation 58(2), 165–186 (2011).

    Article  Google Scholar 

  30. 30.

    Sheikh, S. I., Pines, D. J.: Recursive estimation of spacecraft position using x-ray pulsar time of arrival measurements. In: ION 61st annual meeting, pp. 464–475. (2005)

  31. 31.

    Simon, D.: Optimal state estimation: Kalman, H-Infinity, and nonlinear approaches. John Wiley & Sons. (2006)

  32. 32.

    Speyer, J. L., Chung, W. H.: Stochastic processes, estimation, and control, vol. 17. Siam. (2008)

  33. 33.

    Wei, E., Jin, S., Zhang, Q., Liu, J., Li, X., Yan, W.: Autonomous navigation of mars probe using x-ray pulsars: Modeling and results. Adv. Space Res. 51(5), 849–857 (2013).

    Article  Google Scholar 

  34. 34.

    Winternitz, L. M., Hassouneh, M. A., Mitchell, J. W., Valdez, J. E., Price, S. R., Semper, S. R., Wayne, H. Y., Ray, P. S., Wood, K. S., Arzoumanian, Z., et al.: X-ray pulsar navigation algorithms and testbed for SEXTANT. In: 2015 IEEE aerospace conference, pp. 1–14. IEEE.

  35. 35.

    Winternitz, L. M., Mitchell, J. W., Hassouneh, M. A., Valdez, J. E., Price, S. R., Semper, S. R., Wayne, H. Y., Ray, P. S., Wood, K. S., Arzoumanian, Z., et al.: SEXTANT x-ray pulsar navigation demonstration: Flight system and test results. In: Aerospace conference, 2016 IEEE, pp. 1–11. IEEE. (2016)

  36. 36.

    Wolfe, J. D., Speyer, J. L., Lee, E., Lee, Y. J., Hwang, S.: Estimation of relative satellite position using transformed differential carrier-phase GPS measurements. J. Guid. Control Dynam. 30(5), 1217–1227 (2007).

    Article  Google Scholar 

  37. 37.

    Wolfe, J. D., Williamson, W. R., Speyer, J. L.: Hypothesis testing for resolving integer ambiguity in GPS. Navigation 50(1), 45–56 (2003).

    Article  Google Scholar 

  38. 38.

    Wright, J. R.: GPS composite clock analysis. International Journal of Navigation and Observation. (2008)

Download references


This work was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information



Corresponding author

Correspondence to Po-Ting Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, PT., Zhou, B., Speyer, J.L. et al. Aspects of Pulsar Navigation for Deep Space Mission Applications. J Astronaut Sci 67, 704–739 (2020).

Download citation


  • Pulsar
  • Navigation
  • Integer ambiguity resolution
  • Covariance analysis