Periodic Orbits for Sounding Mars’ Atmosphere by Down- and Limb-Looking Measurements

Abstract

The Periodic Multi-Sun-Synchronous Orbit allows the planning of observational cycles in which the solar illumination of the observed planet varies regularly, and returns to the initial condition at the beginning of each cycle. In the classical down-looking geometry of observation, this leads to the possibility of reconstructing the temporal evolution of all planetary parameters that are characterised by a typical variation in the solar day. In this paper, such an orbit is proposed to analyse the evolution of Mars’ atmosphere time-varying parameters taking into account, in addition to the down-looking configuration, a limb-looking geometry that works with a solar occultation technique.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Kliore, A., Fjeldbo, G., Seidel, B.: First results of the Mariner-6 radio occultation measurement of the lower atmosphere of Mars. Radio Sci. 5(2), 373–379 (1970)

    Article  Google Scholar 

  2. 2.

    Barth, C.A., Hord, C.W., Pearce, J.B., Kelly, K.K., Anderson, G.P., Stewar, A.I.: Mariner 6 and 7 ultraviolet spectrometer experiment: upper atmosphere data. J. Geophys. Res. 76(10), 2213–2217 (2001)

    Article  Google Scholar 

  3. 3.

    Barth, C.A., Hord, C.W., Stewart, A.I., Lane, A.L.: Mariner 9 ultraviolet spectrometer experiment: initial results. Science. 175(4019), 309–312 (1972)

    Article  Google Scholar 

  4. 4.

    Nier, A.O., McElroy, M.B.: Composition and structure of Mars' upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82(28), 4341–4349 (1977)

    Article  Google Scholar 

  5. 5.

    Albee, A.L., Arvidson, R.E., Palluconi, F., Thorpe, T.: Overview of the Mars global surveyor mission. J. Geophys. Res. 106(E10), 23291–23316 (2001)

    Article  Google Scholar 

  6. 6.

    Hurley, K., Mitrofanov, I., Charyshnikov, S., Grinkov, V., Kozyrev, A., Litvak, M., Sanin, A., Boynton, W., Fellows, C., Harshman, K., Shinohara, C., Starr, R.: The Mars odyssey experiments in the third interplanetary network. Adv. Space Res. 38(7), 1312–1315 (2006)

    Article  Google Scholar 

  7. 7.

    Korable, O.I., Bertaux, J.-L., Dubois, J.-P.: Occultation of stars in the UV: study of the atmosphere of Mars. J. Geophys. Res. 106(E4), 7597–7610 (2001)

    Article  Google Scholar 

  8. 8.

    Taylor, F.W., Calcutt, S.B., Read, P.L., Lewis, S.R., McCleese, D.J., Schofield, J.T., Zurek, R.W.: Atmospheric temperature sounding on Mars, and the climate sounder on the 2005 reconnaissance orbiter. Adv. Space Res. 38(4), 713–717 (2006)

    Article  Google Scholar 

  9. 9.

    Bougher, S.W., et al.: The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. Space Physics. 122(1), 1296–1313 (2017)

    Article  Google Scholar 

  10. 10.

    Vandaele, A.C., Neefs, E., Drummond, R., Thomas, I.R., Daerden, F., Lopez-Moreno, J.J., Rodriguez, J., Patel, M.R., Bellucci, G., Allen, M., Altieri, F., Bolsée, D., Clancy, T., Delanoye, S., Depiesse, C., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Geminale, A., Gérard, J.C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Lefèvre, F., López-Puertas, M., López-Valverde, M., Mahieux, A., McConnell, J., Mumma, M., Neary, L., Renotte, E., Ristic, B., Robert, S., Smith, M., Trokhimovsky, S., Vander Auwera, J., Villanueva, G., Whiteway, J., Wilquet, V., Wolff, M.: The NOMAD team, science objectives and performances of NOMAD, a spectrometer suit for the ExoMars TGO mission. Planet Space Sci. 119, 233–249 (2015)

    Article  Google Scholar 

  11. 11.

    Alvarellos, J.L.: Perturbations on a stationary satellite by the longitude-dependent terms in Mars’ gravitational field. J. Astronaut. Sci. 57(4), 701–715 (2010)

    Article  Google Scholar 

  12. 12.

    Edwards, C.D., Adams, J.T., Bell, D.J., Cesarone, R., DePaula, R., Durning, J.F., Ely, T.A., Leung, R.Y., McGraw, C.A., Rosell, S.N.: Strategies for telecommunications and navigation in support of Mars exploration. Acta Astronaut. 48(5–12), 661–668 (2007)

    Google Scholar 

  13. 13.

    Edwards, C., De Paula, R.: Key telecommunications technologies for increasing data return for future Mars exploration. Acta Astronaut. 61(1–6), 131–138 (2007)

    Article  Google Scholar 

  14. 14.

    Hastrup, R., Bell, D., Cesarone, R., Edwards, C., Ely, T., Guinn, J., Rosell, S., Srinivasan, J., Townes, S.: Mars network for low-cost missions. Acta Astronaut. 52(2–6), 227–235 (2003)

    Article  Google Scholar 

  15. 15.

    Silva, J.J., Romero, P.: Optimal longitudes determination for the station keeping of areostationary satellites. Planet Space Sci. 87, 14–18 (2013)

    Article  Google Scholar 

  16. 16.

    Niccolai, L., Quarta, A.A., Mengali, G.: Electric sail elliptic displaced orbits with advanced thrust model. Acta Astronaut. 138, 503–511 (2017)

    Article  Google Scholar 

  17. 17.

    Niccolai, L., Quarta, A.A., Mengali, G.: Electric sail-based displaced orbits with a refined thrust model. Proc Inst Mech Eng Part G J Aerosp Eng. 232(3), 423–432 (2018)

    Article  Google Scholar 

  18. 18.

    Ortore, E., Circi, C., Bunkheila, F., Ulivieri, C.: Earth and Mars observation using periodic orbits. Adv. Space Res. 49(1), 185–195 (2012)

    Article  Google Scholar 

  19. 19.

    Circi, C., Ortore, E., Bunkheila, F., Ulivieri, C.: Elliptical multi-sun-synchronous orbits for Mars exploration. Celest. Mech. Dyn. Astron. 114(3), 215–227 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Hays, P.B., Robie, R.G.: Stellar spectra and atmospheric composition. J. Atmos. Sci. 25(6), 1141–1153 (1968)

    Article  Google Scholar 

  21. 21.

    Hays, P.B., Roble, R.G.: Atmospheric properties from the inversion of planetary occultation data. Planet Space Sci. 16(9), 1197–1198 (1968)

    Article  Google Scholar 

  22. 22.

    Robie, P.B., Hays, R.G.: A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data. Planet Space Sci. 20(10), 1727–1744 (1972)

    Article  Google Scholar 

  23. 23.

    Elliot, J.L.: Stellar occultation studies of the solar system. Annu. Rev. Astron. Astrophys. 17, 445–475 (1979)

    Article  Google Scholar 

  24. 24.

    Smith, G.R., Hunten, D.M.: Study of planetary atmospheres by absorptive occultations. Rev. Geophys. 28(2), 117–143 (1990)

    Article  Google Scholar 

  25. 25.

    Elliot, J.L., Olkin, C.B.: Probing planetary atmospheres with stellar occultations. Annu. Rev. Earth Planet. Sci. 24, 89–123 (1996)

    Article  Google Scholar 

  26. 26.

    Kozai, Y.: The motion of a close earth satellite. Astron. J. 64(1274), 367–377 (1959)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Cinelli, M., Circi, C., Ortore, E.: Polynomial equations for science orbits around Europa. Celest. Mech. Dyn. Astron. 122(3), 199–212 (2015)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Merson, R.H.: The motion of a satellite in an axi-symmetric gravitational field. Geophys. J. Int. 4(Supplement 1), 17–52 (1961)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Lemoine, F.G., Smith, D.E., Rowlands, D.D., Zuber, M.T., Neumann, G.A., Chinn, D.S.: An improved solution of the gravity field of Mars (GMM-2B) from Mars global surveyor. J. Geophys. Res. 106(E10), 23359–23376 (2001)

    Article  Google Scholar 

  30. 30.

    Bertaux, J.-L., et al.: SPICAM on Mars express: observing modes and overview of UV spectrometer data and scientific results. J Geophys Res Planets. 111(E10S90), 40 (2006)

    Google Scholar 

  31. 31.

    Kleinböhl, A., et al.: Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114(E10006), 30 (2009)

    Google Scholar 

  32. 32.

    Vandaele, A.C., Neefs, E., Drummond, R., Thomas, I.R., Daerden, F., Lopez-Moreno, J.J., Rodriguez, J., Patel, M.R., Bellucci, G., Allen, M., Altieri, F., Bolsée, D., Clancy, T., Delanoye, S., Depiesse, C., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Geminale, A., Gérard, J.C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Lefèvre, F., López-Puertas, M., López-Valverde, M., Mahieux, A., McConnell, J., Mumma, M., Neary, L., Renotte, E., Ristic, B., Robert, S., Smith, M., Trokhimovsky, S., Vander Auwera, J., Villanueva, G., Whiteway, J., Wilquet, V., Wolff, M.: Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci. 119, 233–249 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emiliano Ortore.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortore, E., Spazzacampagna, L., Laneve, G. et al. Periodic Orbits for Sounding Mars’ Atmosphere by Down- and Limb-Looking Measurements. J Astronaut Sci 66, 460–474 (2019). https://doi.org/10.1007/s40295-019-00161-8

Download citation

Keywords

  • Periodic orbit
  • Limb-looking
  • Mars atmosphere analysis