Optimization of Impulsive Europa Capture Trajectories using Primer Vector Theory

Abstract

The optimization of impulsive, three-dimensional transfer trajectories to capture at Europa is investigated. Two initial conditions are considered: a halo orbit in the vicinity of Europa, and a resonant orbit around Jupiter. Primer vector theory is utilized to determine the number of impulses and the gradient information needed for this highly nonlinear, many revolution optimization problem. A custom multi-shooting algorithm is developed to mitigate the extreme sensitivities from long flight times through regions dominated by chaotic dynamics. New equations are derived to inform decisions to keep or remove small intermediate maneuvers. Optimization of previously generated, near-optimal halo-to-capture transfers verifies that an energetic-based minimum ΔV provides a good initial measure of optimality. For the resonant boundary scenario, a new 3D periodic orbit is generated that incorporates natural transfers between a resonant orbit and a halo orbit. The intermediate halo orbit enables phase-free connection of the capture and resonant phases. The end-to-end transfers successfully converge to quasi-ballistic, manifold-like trajectories.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Anderson, R. L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 124(2), 177–199 (2016). https://doi.org/10.1007/s10569-015-9659-7

    MathSciNet  Article  Google Scholar 

  2. 2.

    Anderson, R.L.: Approaching moons from resonance via invariant manifolds. J. Guid. Control Dyn. 38(6), 1097–1109 (2015). https://doi.org/10.2514/1.G000286

    Article  Google Scholar 

  3. 3.

    Anderson, R.L., Lo, M.W.: Flyby design using heteroclinic and homoclinic connections of unstable resonant orbits. In: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, LA (2011)

  4. 4.

    Bokelmann, K.A., Russell, R.P.: Halo orbit to science orbit captures at planetary moons. Acta Astron. 134, 141–151 (2017). https://doi.org/10.1016/j.actaastro.2017.01.035

    Article  Google Scholar 

  5. 5.

    Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969). https://doi.org/10.2514/3.5267

    Article  Google Scholar 

  6. 6.

    Campagnola, S., Russell, R.P.: Endgame problem part 1: V-leveraging technique and the leveraging graph. J. Guid. Control Dyn. 33, 463–475 (2010a). https://doi.org/10.2514/1.44258

    Article  Google Scholar 

  7. 7.

    Campagnola, S., Russell, R.P.: Endgame problem part 2: Multibody technique and the tisserand-poincaré graph. J. Guid. Control Dyn. 33(2), 476–486 (2010b). https://doi.org/10.2514/1.44290

    Article  Google Scholar 

  8. 8.

    Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D.J., Petropoulos, A.E., Russell, R.P.: Tisserand-leveraging transfers. J. Guid. Control Dyn. 37, 1202–1210 (2014). https://doi.org/10.2514/1.62369

    Article  Google Scholar 

  9. 9.

    Davis, K. E.: Locally Optimal Transfer Trajectories between Libration Point Orbits Using Invariant Manifolds. PhD thesis, The University of Colorado (2009)

  10. 10.

    Hiday, L. A.: Optimal Transfers between Libration Point in the Elliptic Restricted Three-Body Problem. PhD thesis, Purdue University (1992)

  11. 11.

    Howell, K.C.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32, 53–71 (1984). https://doi.org/10.1007/BF01358403

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jezewski, D.J., Rozendaal, H.L.: An efficient method for calculating optimal free-space n-impulse trajectories. AIAA J. 6(11), 2160–2165 (1968). https://doi.org/10.2514/3.4949

    Article  Google Scholar 

  13. 13.

    JPL. Jpl horizons solar system data and ephemeris computation service. solar system dynamics. Solar System Bodies, 2007. URL https://ssd.jpl.nasa.gov/?bodies

  14. 14.

    Lantione, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astron. 68, 1361–1378 (2011). https://doi.org/10.1016/j.actaastro.2010.09.021

    Article  Google Scholar 

  15. 15.

    Lantoine, G., Russell, R. P.: Near ballistic halo-to-halo transfers between planetary moons. J. Astronaut. Sci. 58(3), 335–363 (2011). https://doi.org/10.1007/BF03321174

    Article  Google Scholar 

  16. 16.

    Lara, M., Russell, R. P.: Concerning the Family G of the Restricted Three-Body Problem. Huesca, Spain. IX Jornadas de Trabajo en Mecanica Celeste (2006)

  17. 17.

    Lara, M., Russell, R.P.: Computiation of a science orbit about europa. J. Guid. Control Dyn. 30(1), 259–263 (2007). https://doi.org/10.2514/1.22493

    Article  Google Scholar 

  18. 18.

    Lawden, D. F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    Google Scholar 

  19. 19.

    Lion, P.M., Handelsman, M.: Primer vector on fixed-time impulsive trajectories. AIAA Journal 6(1), 127–132 (1968). https://doi.org/10.2514/3.4452

    Article  Google Scholar 

  20. 20.

    Ottesen, D., Russell, R.P.: Space Trajectory Optimization Using Embedded Boundary Value problems. Number AAS, pp. 17–837. Stevenson, WA. AAS/AIAA Astrodynamics Specialist Conference (2017)

  21. 21.

    Paskowitz, M.E., Scheeres, D.J.: Design of science orbits about planetary satellites: Application to europa. J. Guid. Control Dyn. 29(5), 1147–1158 (2006). https://doi.org/10.2514/1.19464

    Article  Google Scholar 

  22. 22.

    Prussing, J.E.: Primer vector Theory and Applications, pp. 16–36. Cambridge Aerospace Series Cambridge University Press. https://doi.org/10.1017/CBO9780511778025.003 (2010)

  23. 23.

    Restrepo, R., Russell, R.P.: A Database of Planar Axi-Symmetric Periodic Orbits for the Solar System Number AAS, pp. 17–694. Stevenson, WA. AAS/AIAA Astrodynamics Specialist Conference (2017a)

  24. 24.

    Restrepo, R., Russell, R.P.: Patched Periodic orbits: A Systematic Strategy for Low Energy Transfer Design. Number AAS, pp 17–695. Stevenson, WA. AAS/AIAA Astrodynamics Specialist Conference (2017b)

  25. 25.

    Russell, R.P.: Global search for planar and three-dimensional periodic orbits near europa. J. Astron. Sci. 54, 199–226 (2006). https://doi.org/10.1007/BF03256483

    MathSciNet  Article  Google Scholar 

  26. 26.

    Russell, R.P., Brinckerhoff, A.T.: Circulating eccentric orbits around planetary moons. J. Guid. Control Dyn. 32(2), 423–435 (2009). https://doi.org/10.2514/1.38593

    Article  Google Scholar 

  27. 27.

    Sweetser, T. H.: Estimate of the Global Minimum Dv Needed for Earth-Moon Transfer. Number AAS, pp. 91–101. Houston, TX. AAS/AIAA Spaceflight Mechanics Meeting (1991)

  28. 28.

    Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  29. 29.

    Vanderplaats, G.N.: Multidiscipline Design Optimization. Vanderplaats Research and Development. Colorado Springs, CO (2007)

  30. 30.

    Vaquero, M., Howell, K.C.: Design of transfer trajectories between resonant orbits in the earth-moon restricted problem. Acta Astron. 94, 302–317 (2014). https://doi.org/10.1016/j.actaastro.2013.05.006

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Bokelmann.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bokelmann, K.A., Russell, R.P. Optimization of Impulsive Europa Capture Trajectories using Primer Vector Theory. J Astronaut Sci 67, 485–510 (2020). https://doi.org/10.1007/s40295-018-00146-z

Download citation

Keywords

  • Three-body problem
  • Capture
  • Halo
  • Orbit
  • Optimization
  • Primer vector