The Journal of the Astronautical Sciences

, Volume 64, Issue 3, pp 285–309

Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit

Article
  • 162 Downloads

Abstract

Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.

Keywords

Collision probability Monte Carlo Graphics processing unit Space situational awareness 

References

  1. 1.
    Adurthi, N., Singla, P.: Conjugate unscented transformation-based approach for accurate conjunction analysis. J. Guid. Control. Dyn. 38(9), 1642–1658 (2015). doi:10.2514/1.G001027 CrossRefGoogle Scholar
  2. 2.
    Alfano, S.: Determining satellite close approaches, part II. J. Astronaut. Sci. 42(2), 143–152 (1994)Google Scholar
  3. 3.
    Alfano, S.: Review of conjunction probability methods for short-term encounters. In: AAS/AIAA Space Flight Mechanics Meeting, Sedona, Arizona, AAS 07-148 (2007)Google Scholar
  4. 4.
    Alfano, S.: Satellite conjunction Monte Carlo analysis. In: AIAA Space Flight Mechanics Meeting, AAS 09-233 (2009)Google Scholar
  5. 5.
    Arora, N., Russell, R.P.: A GPU accelerated multiple revolution Lambert Solber for fast mission design. In: AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA, AAS 10-198 (2010)Google Scholar
  6. 6.
    Arora, N., Russell, R.P.: Efficient interpolation of high-fidelity geopotential. J. Guid. Control. Dyn. (2015). doi:10.2514/1.G001291 Google Scholar
  7. 7.
    Arora, N., Vittaldev, V., Russell, R.P.: Parallel computation of trajectories using graphics processing units and interpolated gravity models. J. Guid. Control. Dyn. 38(8), 1345–1355 (2015). doi:10.2514/1.G000571 CrossRefGoogle Scholar
  8. 8.
    Brown, A., Tichy, J., Demoret, M., Rand, D.: GPU accelerated conjunction assessment with applications to formation flight and space debris, paper AAS 13-902 (2013)Google Scholar
  9. 9.
    Cheng, J.: Sampling algorithms for estimating the mean of bounded random variables. Comput. Stat. 16 (1), 1–23 (2001). doi:10.1007/s001800100049 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Coppola, V.: Including velocity uncertainty in the probability of collision between space objects. In: AAS/AIAA Spaceflight Mechanics Meeting, Charleston, SC, AAS 12-247 (2012)Google Scholar
  11. 11.
    Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for monte carlo estimation. SIAM J. Comput. 29(5), 1484–1496 (2000). doi:10.1137/S0097539797315306 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    DeMars, K.J., Jah, M.K.: Collision probability with gaussian mixture orbit uncertainty. J. Guid. Control. Dyn. 37 (3), 979–985 (2014). doi:10.2514/1.62308
  13. 13.
    Fujimoto, K., Scheeres, D.J.: Tractable expressions for nononlinear propagated uncertainties. J. Guid. Control. Dyn. 38(6), 1146–1151 (2015). doi:10.2514/1.G000795 CrossRefGoogle Scholar
  14. 14.
    Gajek, L., Niemiro, W., Pokarowski, P.: Optimal monte carlo integration with fixed relative precision. J. Complex. 29 (1), 4–26 (2013). doi:10.1016/j.jco.2012.09.001 [http://www.sciencedirect.com/science/ article/pii/S0885064X12000805]MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hobson, T., Clarkson, V.: GPU-based space situational awareness simulation utilising parallelism for enhanced multi-sensor management. In: Advance Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawaii (2012)Google Scholar
  16. 16.
    Jones, B.A., Doostan, A.: Satellite collision probability estimation using polynomial chaos. Adv. Space Res. 52(11), 1860–1875 (2013). doi:10.1016/j.asr.2013.08.027 CrossRefGoogle Scholar
  17. 17.
    Jones, B.A., Parrish, N., Doostan, A.: Postmaneuver collision probability estimation using sparse polynomial chaos expansions. J. Guid. Control Dyn. 38(8), 1425–1437 (2015). doi:10.2514/1.G000595 CrossRefGoogle Scholar
  18. 18.
    Kaplinger, B., Wie, B.: Optimized GPU simulation of a disrupted near-earth object including self gravity. In: 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, LA (2011)Google Scholar
  19. 19.
    Kessler, D.J., Johnson, N.L., Liou, J.C., Matney, M.: The kessler syndrome: implications to future space operations. In: 33rd Annual AAS Guidance and Control Conference (2010)Google Scholar
  20. 20.
    Lyzhoft, J., Hawkings, M., Kaplinger, B., Wie, B.: GPU-based optical navigation and terminal guidance simulation of a hypervelocity asteroid intercept vehicle. In: AIAA Guidance, Navigation, and Control (GNC) Conference, pp 2013–4966. AIAA, Boston, MA (2013)Google Scholar
  21. 21.
    Nakhjiri, N., Villac, B.F.: An algorithm for trajectory propagation and uncertainty mapping on GPU, Paper AAS 13-376. In: 23Rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI (2013)Google Scholar
  22. 22.
    Nayak, M.: Impact of national space policy on orbital debris mitigation and US Air Force end of life satellite operations. In: SpaceOps Conference, Stockholm, Sweden. doi:10.2514/6.2012-1284611 (2012)
  23. 23.
    Parrish, N.: Accelerating Lambert’s Problem on the GPU in MATLAB. Senior project report, California Polytechnic State University - San Luis Obispo (2012)Google Scholar
  24. 24.
    Russell, R.P., Arora, N.: Global point mascon models for simple, accurate and parallel geopotential computation. J. Guid. Control. Dyn. 35(5), 1568–1581 (2012). doi:10.2514/1.54533 CrossRefGoogle Scholar
  25. 25.
    Sabol, C., Binz, C., Segerman, A., Roe, K., Schumacher, PW: Probabiliy of collision with special perturbations dynamics using the Monte Carlo method. In: AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, AAS 11-435 (2011)Google Scholar
  26. 26.
    Shen, H., Vittaldev, V., Karlgaard, C.D., Russell, R.P., Pellegrini, E.: Parallelized sigma point and particle filters for navigation problems, paper AAS 13-034. In: 36th Annual AAS Guidance and Control Conference, Feb 1–6, Breckenridge, CO (2013)Google Scholar
  27. 27.
    Ueng, S.Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.M.W.: Languages and Compilers for Parallel Computing. In: CUDA-Lite: Reducing GPU Programming Complexity. doi:10.1007/978-3-540-89740-8_1, pp 1–15. Springer, Berlin (2008)
  28. 28.
    Vallado, D.A.: Fundamental of Astrodynamics and Applications, 3rd edn. Microcosm Press/Springer (2007)Google Scholar
  29. 29.
    Vittaldev, V., Russell, R.: Collision probability for space objects using gaussian mixture models. In: Proceedings of the 23Rd AAS/AIAA Space Flight Mechanics Meeting, vol. 148 (2013a)Google Scholar
  30. 30.
    Vittaldev, V., Russell, R.P.: Collision probability for resident space objects using gaussian mixture models, AAS 13-351 (2013b)Google Scholar
  31. 31.
    Vivek, Vittaldev, Russell Ryan, P.: Space object collision probability using multidirectional gaussian mixture models. J. Guid. Control. Dyn. 39(9), 2163–2169 (2016). doi:10.2514/1.G001610 CrossRefGoogle Scholar
  32. 32.
    Wagner, S., Wie, B., Kaplinger, B.: Cocomputation solutions to Lambert’s problem on modern graphics processing units. J. Guid. Control. Dyn. 38 (7), 1305–1310 (2015). doi:10.2514/1.G000840 CrossRefGoogle Scholar

Copyright information

© American Astronautical Society 2017

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and Engineering MechanicsThe University of Texas at AustinAustinUSA

Personalised recommendations