Skip to main content
Log in

Global Search Capabilities of Indirect Methods for Impulsive Transfers

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user’s intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  2. Lion, P.M., Handelsman, M.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968). doi:10.2514/3.4452

    Article  MATH  Google Scholar 

  3. Jezewski, D.J., Rozendaal, H.L.: An efficient method for calculating optimal free-space n-impulse trajectories. AIAA J. 6(11), 2160–2165 (1968). doi:10.2514/3.3607

    Article  MATH  Google Scholar 

  4. Prussing, J.E.: A class of optimal two-impulse rendezvous using multiple-revolution lambert solutions. J. Astron. Sci. 48(2), 131–148 (2000)

    MathSciNet  Google Scholar 

  5. Prussing J.E., Chiu, J.H.: Optimal multiple-impulse time-fixed rendezvous between circular orbits. J. Guid, Control, Dyn. 9(1), 17–22 (1986). doi:10.2514/3.20060

    Article  Google Scholar 

  6. Hughes S.P., Mailhe, L.M., Guzman, J.J.: A Comparison of trajectory optimization methods for the impulsive minimum fuel rendezvous problem. Adv. Astron. Sci. 113, 85–104 (2003)

    Google Scholar 

  7. Abdelkhalik, O., Mortari, D.: N-impulse orbit transfer using genetic algorithms. J. Spacecr. Rocket. 44(2), 456–460 (2007). doi:10.2514/1.24701

    Article  Google Scholar 

  8. Pontani, M., Ghosh, P., Conway, B.A.: Particle swarm optimization of multiple-burn rendezvous trajectories. J. Guid. Control Dyn. 35(4), 1192–1207 (2012). doi:10.2514/1.55592

    Article  Google Scholar 

  9. Luo, Y.Z., Tang, G.J., Lei, Y.J., et al.: Optimization of multiple-impulse multiple-revolution rendezvous phasing maneuvers. J. Guid. Control Dyn. 30(4), 46–952 (2007). doi:10.2514/1.25620

    Google Scholar 

  10. Luo, Y.Z., Zhang, J., Li, H.Y., et al.: Interactive optimization approach for optimal impulsive rendezvous using primer vector and evolutionary algorithms. Acta Astron. 67(3), 396–405 (2010). doi:10.1016/j.actaastro.2010.02.014

    Article  Google Scholar 

  11. Rosa Sentinella, M., Casalino, L.: Cooperative evolutionary algorithm for space trajectory optimization. Celestial Mech. Dyn. Astron. 105, 211–227 (2009). doi:10.1007/s10569-009-9223-4

    Article  MATH  Google Scholar 

  12. Colasurdo, G., Pastrone, D.: Indirect Optimization Method for Impulsive Transfer, AIAA Paper 1994-3762, 1994. doi:10.2514/6.1994-3762

  13. Chilan, C.: Automated Design of Multiphase Space Missions Using Hybrid Optimal Control. Ph.D. thesis, University of Illinois (2009)

  14. Chilan, C., Conway, B.A.: Automated design of multiphase space missions using hybrid optimal control. J. Guid. Control Dyn. 36(5), 1410–1424 (2013). doi:10.2514/1.58766

    Article  Google Scholar 

  15. Casalino, L., Colasurdo, G., Pastrone, D.: Optimization procedure for preliminary design of opposition-class mars missions. J. Guid. Control Dyn. 21(1), 134–140 (1998). doi:10.2514/2.4209

    Article  MATH  Google Scholar 

  16. Casalino, L., Colasurdo, G., Pastrone, D.: Optimization of ΔV earth-gravity-assist trajectories. J. Guid. Control Dyn. 21(6), 991–995 (1998). doi:10.2514/2.4336

    Article  Google Scholar 

  17. Haberkorn, T., Martinon, P., Gergaud, J.: Low thrust minimum-fuel orbital transfer: a homotopic approach. J. Guid. Control Dyn. 27(6), 1046–1060 (2004). doi:10.2514/1.4022

    Article  Google Scholar 

  18. Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dyn. 35(1), 245–258 (2012). doi:10.2514/1.52476

    Article  Google Scholar 

  19. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation. Opt. Control Appl. Methods 23(4), 171–197 (2002). doi:10.1002/oca.709

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, H.-X., Casalino, L., Li, H.-Y.: Adjoints estimation methods for impulsive moon-to-earth trajectories in the restricted three-body problem. Opt. Control Appl. Methods (2014). doi:10.1002/oca.2120

  21. Shen, H.-X., Casalino, L.: Indirect optimization of three-dimensional multiple-impulse moon-to-earth transfers, to be published in the journal of astronautical sciences. doi:10.1007/s40295-014-0018-9

  22. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control, pp 42–89. Rev. ed., Hemisphere, Washington, DC (1975)

    Google Scholar 

  23. Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Control Dyn. 22(5), 637–642 (1999). doi:10.2514/2.4451

    Article  Google Scholar 

  24. Brown, C.D.: Spacecraft Mission Design, 2nd, pp 39–51. AIAA, Reston, VA (1998)

    Book  Google Scholar 

  25. Vallado, D.A.: Fundamental of Astrodynamics and Applications, 2nd, pp 122–343. Microcosm Press, El Segundo, CA, and Kluwer Academic, Boston, MA (2001)

    Google Scholar 

  26. Der, G.: The Superior Lambert Algorithm,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. held in Wailea, Maui, Hawaii (2011)

    Google Scholar 

  27. Edelbaum, T.N.: How Many Impulses?, pp 64–69. Astronautics and Aeronautics (1967)

  28. Baranov, A.A., Roldugin, D.S.: Six-impulse maneuvers for rendezvous of spacecraft in near-circular noncoplanar orbits. Cosm. Res. 50(6), 472–479 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The third author would like to thank the National Natural Science Foundation of China (no. 11222215), the Program for New Century Excellent Talents in University (NCET-13-0159), and the Project supported by Hunan Provincial Natural Science Foundation of China (13JJ1001) for their support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Casalino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, HX., Casalino, L. & Luo, YZ. Global Search Capabilities of Indirect Methods for Impulsive Transfers. J of Astronaut Sci 62, 212–232 (2015). https://doi.org/10.1007/s40295-015-0073-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0073-x

Keywords

Navigation