Skip to main content
Log in

Evaluation of Five Control Algorithms for Addressing CMG Induced Jitter on a Spacecraft Testbed

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Spacecraft often experience jitter from reaction wheels, control moment gyros (CMGs), or from motion of other internal parts. One may isolate fine pointing equipment by passive techniques, but active vibration control employing knowledge of the periodic nature of jitter can improve performance. Previous work by the authors and co-workers tested active isolation using a 6 degree-of-freedom Stewart platform. A new class of applications is laser communication relay satellites, which replaces radio frequencies communication by laser communications. Laser beam jitter can be corrected by control of tip and tilt in fast steering mirrors. This paper develops experiments testing five candidate jitter cancellation algorithms on the Bifocal Relay Mirror Spacecraft, Three Axis Simulator 2 testbed at the Naval Postgraduate School. Jitter results from the CMGs. Multiple period repetitive control (MPRC) and matched basis function repetitive control (MBFRC) are tested. Both use disturbance period information from Hall effect sensors for the CMG three phase brushless DC motors. Filtered-X LMS, adaptive linear model predictive control, and the Clear Box algorithm with Adaptive Basis Method are also tested. The best disturbance rejection resulted from the last of these choices, with a 66 % overall amplitude reduction. Concerning MPRC it was discovered that repeating an addressed period can be used as a technique to decrease sensitivity to accurate knowledge of the disturbance period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Edwards, S.G., Agrawal, B.N., Phan, M.Q., Longman, R.W.: Disturbance identification and rejection experiments on an ultra quiet platform. Adv. Astronaut. Sci. 103, 633–651 (1999)

    Google Scholar 

  2. Kim, J.J., Sand, T., Agrawal, B.N: Acquisition, tracking, and pointing technology development for bifocal relay mirror spacecraft. Proc. SPIE. 6569, 656907–1 (2007)

    Article  Google Scholar 

  3. Tomizuka, M., Tsao, T.-C., Chew, K.K.: Analysis and synthesis of discrete time repetitive controllers. J. Dyn. Syst. Meas. Control. 111, 353–358 (1989)

    Article  MATH  Google Scholar 

  4. Longman, R.W.: On the theory and design of linear repetitive control systems. In: Ahn, H.-S. (ed.) European journal of control, special section on iterative learning control, vol. 16, No. 5, pp. 447–496 (2010)

  5. Yamada, M., Riadh, Z., Funahashi, Y.: Design of robust repetitive control system for multiple periods. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3739–3744 (2000)

  6. Yamada, M., Riadh, Z., Funahashi, Y.: Discrete-time repetitive control systems with multiple periods. In: Proceedings of 6th International Workshop on Advanced Motion Control, pp. 228–233 (2000)

  7. Longman, R.W., Yeol, J.W., Ryu, Y.S.: Improved methods to cancel multiple unrelated periodic disturbances by repetitive control. Adv. Astronaut. Sci. 123, 199–218 (2006)

    Google Scholar 

  8. Longman, R.W., Yeol, J.W., Ryu, Y.S.: Tuning and performance of robust multiple-period repetitive control. Adv. Astronaut. Sci. 124, 687–705 (2006)

    Google Scholar 

  9. Ahn, E.S., Longman, R.W., Kim, J.J.: Evaluating the stability robustness to model errors of multiple-period repetitive control. Adv. Astronaut. Sci. 142, 2563–2580 (2012)

    Google Scholar 

  10. Nagashima, M., Longman, R.W.: Stability and performance analysis of matched basis function repetitive control in the frequency domain. Adv. Astronaut. Sci. 119, 1581–1600 (2005)

    Google Scholar 

  11. Shi, Y., Longman, R.W., Nagashima, M.: Small gain stability theory for matched basis function repetitive control. In: Proceedings of the first IAA Conference on Dynamics and Control of Space Systems. Porto Portugal, to appear in Advances in the Astronautical Sciences (2012)

  12. Elliott, S.J., Stothers, I.M., Nelson, P.A.: A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Trans. Acoust. Signal Process. 25(6), 484–491 (1977)

    Article  Google Scholar 

  13. Haykin, S.: Adaptive Filter Theory, Fourth Edition. Prentice-Hall, Upper Saddle River, NJ (1985)

    Google Scholar 

  14. Kuo, S.M., Morgan, D.R.: Active Noise Control Systems. Wiley, New York (1996)

    Google Scholar 

  15. Darling, R.S., Phan, M.Q.: Predictive controllers for simultaneous tracking and disturbance rejection. In: AIAA Guidance, Navigation, and Control Conference and Exhibit 16-19. Providence, Rhode Island (2004)

    Google Scholar 

  16. Eure, K.W., Juang, J.-N.: Broadband noise control using predictive techniques. NASA technical memorandum 110320 (1997)

  17. Longman, R.W., Juang, J.-N., Phan, M.Q.: On the ill-conditioning in MPC when used to address the repetitive control problem. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. Hawaii (2008)

  18. Goodzeit, N.E., Phan, M.Q.: System identification in the presence of completely unknown periodic disturbances. J. Guid. Control. Dyn. 23(2), 251–259 (2000)

    Article  Google Scholar 

  19. Phan, M.Q.: Computed basis approach to adaptive tracking and disturbance rejection. MAE technical report No 3062, Department of Mechanical and Aerospace Engineering. Princeton University Press, Princeton, NJ (1999)

    Google Scholar 

  20. Watkins, R.J., Agrawal, B.N.: Use of least means squares filter in control of optical beam jitter. J. Guid. Control. Dyn. 30(4) (2007)

  21. Arancibia Perez, N.O., Chen, N., Gibson, J.S., Tsao, T.-C.: Adaptive control of jitter in laser beam pointing and tracking. In: Proceedings SPIE 6304, Free-Space Laser Communications VI, 63041G (2006)

  22. Shuster, M.D., Oh, S.D.: Three-axis attitude determination from vector observations. J. Guid. Control. Dyn. 4(1), 70–77 (1981)

    Article  MATH  Google Scholar 

  23. Bar-Itzhack, I.Y.: REQUEST: A recursive QUEST algorithm for sequential attitude determination. J. Guid. Control. Dyn. 19(5), 1034–1038 (1996)

    Article  MATH  Google Scholar 

  24. Liebe, C.C.: Accuracy performance of star trackers – a tutorial. IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002)

    Article  Google Scholar 

  25. Tappe, J., Kim, J., Jordan, A., Agrawal, B.: Star tracker attitude estimation for an indoor ground-based spacecraft simulator. In: AIAA Guidance, Navigation, and Control Conference, vol. 1, pp. 1116–1122. Portland OR (2011)

  26. Wie, B.: Space vehicle dynamics and control. AIAA Education Series (1998)

  27. Steinbuch, M.: Repetitive control for systems with uncertain period-time. Automatica 38(12), 2103–2109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lo, C.-P., Longman, R.W.: Frequency response analysis of higher order repetitive control. Adv. Astronaut. Sci. 123, 1183–1202 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Longman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, E.S., Longman, R.W., Kim, J.J. et al. Evaluation of Five Control Algorithms for Addressing CMG Induced Jitter on a Spacecraft Testbed. J of Astronaut Sci 60, 434–467 (2013). https://doi.org/10.1007/s40295-015-0066-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0066-9

Keywords

Navigation