Skip to main content
Log in

Three-dimensional time Optimal Multi-reversal Orbit by Using Solar Sailing

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper a new family of three dimensional (3D) non-Keplerian orbits is produced by using ideally reflective solar sailing. A sailcraft departs from the Earth orbit to accomplish a novel periodic orbit with orbital angular momentum reversing four times over one period. Such a new kind of orbit is referred to as the “multi-reversal orbit”. It is symmetrical with respect to the plane which contains the Sun-perihelion line. This property benefits the calculations and reduces the simulation effort. In order to find the minimum periodic orbits, a time optimal control model is constructed and solved by using an indirect method. Two typical 3D multi-reversal orbits are obtained with different orbital constraints. Some orbital characteristic, like quasi-heliostationary condition near its two aphelion points, are demonstrated via numerical simulations. A comparison between these two typical orbits is conducted to show more details about this new orbit. Differences between the multi-reversal orbit and double-reversal orbit are presented to show the advantages of the multi-reversal concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. McInnes, C.R.: Passive control of displaced solar sail orbits. J. Guid. Control Dyn. 21(6), 975–982 (1998)

    Article  Google Scholar 

  2. Gong, S.P., Li, J.F., Baoyin, H.X.: Formation flying solar-sail gravity tractors in displaced orbit for towing near-earth asteroids. Celest. Mech. Dyn. Astron. 105 (1-3), 159–177 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gong, S.P., Baoyin, H.X., Li, J.F.: Solar sail formation flying around displaced solar orbits. J. Guid. Control Dyn. 30(4), 1148–1152 (2007)

    Article  Google Scholar 

  4. Baoyin, H.X., McInnes, C.R.: Solar sail halo orbit around the sun–earth artificial L1 points. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Vulpetti, G.: Sailcraft at high speed by orbital angular momentum reversal. Acta Astronaut. 40(10), 733–758 (1997)

    Article  Google Scholar 

  6. Hughes, G.W., Macdonald, M., McInnes, C.R.: Sample return from mercury and other terrestrial planets using solar sail propulsion. J. Spacecr. Rocket. 43(4), 828–835 (2006)

    Article  Google Scholar 

  7. Baoyin, H.X., McInnes, C.R.: Trajectories to and from the lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006)

    Article  Google Scholar 

  8. Baoyin, H.X., McInnes, C.R.: Solar sail equilibria in the elliptical restricted three-body problem. J Guid. Control Dyn. 29(3), 538–543 (2006)

    Article  Google Scholar 

  9. Baoyin, H.X., McInnes, C.R.: Solar sail orbits at artificial sun-earth lagrange points. J. Guid. Control Dyn. 28(6), 1328–1331 (2005)

    Article  Google Scholar 

  10. Gong, S.P., Li, J.F., Baoyin, H.X.: Formation reconfiguration in restricted three body problem. Acta Mechanic Sinica 23(3), 321–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gong, S.P., Li, J.F., Baoyin, H.X.: Solar radiation pressure used for formation flying control around the sun-earth libration point. Appl. Math. Mech.(English Edition) 30(8), 1009–1016 (2009)

    Article  MATH  Google Scholar 

  12. Mori, O., Tsuda, Y., Sawada, H., et al.: World’s first demonstration of solar power sailing by IKAROS. Second international symposium on solar sailing (ISSS-2010), Brooklyn, NY, USA (2010)

  13. Gong, S.P., Baoyin, H.X., Li, J.F.: Coupled Attitude-orbit Dynamics and Control for Displaced Solar Orbits. Acta Astronautica 65(5-6), 730–737 (2009)

    Article  Google Scholar 

  14. Vulpetti, G.: Missions to the Heliopause and Beyond by Staged Propulsion Spacecrafts.The World Space Congress, 43rd, Washington DC, Aug. 28 - Sept. 5 1992, IAA-92-0240

  15. Vulpetti, G.: 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronautica 39, 161–170 (1996)

    Article  Google Scholar 

  16. Sauer, C.G. Jr.: Solar sail trajectories for solar-polar and interstellar probe missions. AAS 99-336, 1–16 (1999)

    Google Scholar 

  17. Leipold, M., Wagner, O.: Solar photonic assist trajectory design for solar sail missions to the outer solar system and beyond. Adv. Astronaut. Sci. 100(2), 1035–1045 (1998)

    Google Scholar 

  18. Mengali, G., Quarta, A., Romagnoli, D., et al.: H 2-reversal trajectory: a new mission application for high-performance solar sails. Second International Symposium on Solar Sailing (ISSS 2010), Brooklyn, New York (2010)

  19. Zeng, X.Y., Baoyin, H.X., Li, J.F., et al.: Three-dimensional time optimal double angular momentum reversal trajectory using solar sails. Celest. Mech Dyn. Astron. 111(4), 415–430 (2011)

    Article  MathSciNet  Google Scholar 

  20. Jiang, F.H., Li, J.F., Baoyin, H.X.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dyn. 35(1), 245–258 (2011)

    Article  Google Scholar 

  21. McInnes, C.R.: Solar sailing: technology, dynamics and mission applications, pp. 112–140. Springer–Verlag, London (1999)

    Book  Google Scholar 

  22. Gong, S.P., Baoyin, H.X., Li, J.F.: Solar sail three body transfer trajectory design. . Guid. Control Dyn. 33(3), 873886 (2010)

    Google Scholar 

  23. Rowe, W.M., Luedke, E.E., Edwards, D.K.: Thermal Radiative Properties of Solar Sail Film Materials.2nd AIAA/ASME Thermophysics and Heat Transfer Conference, Palo Alto, California, USA, May 24-26, 1978, Paper AIAA 78-852

  24. Dachwald, B.: Optimal solar-sail trajectories for missions to the outer solar system. J. Guid. Control Dyn. 28(6), 1187–1193 (2005)

    Article  Google Scholar 

  25. Macdonald, M., McInnes, C.R., Hughes, G.W.: Technology requirements of exploration beyond neptune by solar sail propulsion. J. Spacecr. Rocket. 47(3), 472–483 (2010)

    Article  Google Scholar 

  26. McInnes, C.R.: Solar sailing: technology, dynamics and mission applications. 1st ed., Springer, England, U.K., 1999. ISBN: 1-85233-102-X

  27. Wie, B., Murphy, D.: Solar-sail attitude control design for a sail flight validation mission. J. Spacecr. Rocket. 44(4), 809–821 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the financial support provided by the China Scholarship Council to be as a Visiting Ph.D. Student in Texas A&M University with TEES Research Chair Professor Kyle T. Alfriend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Vadali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Alfriend, K.T. & Vadali, S.R. Three-dimensional time Optimal Multi-reversal Orbit by Using Solar Sailing. J of Astronaut Sci 60, 378–395 (2013). https://doi.org/10.1007/s40295-015-0056-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0056-y

Keywords

Navigation