Skip to main content
Log in

Nonlinear Dynamics of a Two-Chain, Three-Body Formation System

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Multibody formation constitutes a new architecture wherein the functional capabilities of a monolithic satellite are distributed, and some planned missions have begun to take advantage of the benefits offered by the use of satellite formations. The nonlinear dynamics of a two-chain, three-body formation system located on a circular orbit on the Earth is presented in this paper with the assist of nonlinear theory in astrodynamics. Different from only five libration points solved from the circular restricted three-body system, there exist sixteen equilibria for the chain system yielded by its geometry of the pseudo-potential function. For some hyperbolic equilibria, an iterative procedure is developed to correct numerically periodic orbits near them, which are referred as Lyapunov orbits in this paper. The invariant manifolds originating from those orbits are employed by Poincaré mapping to create the heteroclinic or homoclinic trajectories, and some non-transversal intersections between them are addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. D’Amico, O. Montenbruck, Proximity Operations of Formation Flying Spacecraft using an Eccentricity/Inclination Vector Separation. J. Guid. Control. Dyn. 29(3), 554–563 (2006)

    Article  Google Scholar 

  2. O. Montenbruck, M. Kirschner, S. D’Amico, S. Bettadpur, E/I-Vector Separation for Safe Switching of the GRACE Formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006)

    Article  MATH  Google Scholar 

  3. Penzo P A, Ammann P W. Tethers in Space Handbook. 2nd Edition, NASA Office of Space Flight, Washington, D. C., May, 1989.

  4. Mazzoleni A P, Hoffman J H. Nonplanar Spin-Up Dynamics of the ASTOR Tethered Satellite System. AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, California, Feb 11–14, 2001, AAS 01–193.

  5. L. Johnson, R.D. Estes, E.C. Lorenzini et al., Propulsive Small Expendable Deployer System Experiment. J. Spacecr. Rocket. 37(2), 173–176 (2000)

    Article  Google Scholar 

  6. M. Kim, C.D. Hall, Control of a Rotating Variable-Length Tethered System. J. Guid. Control. Dyn. 27(5), 849–858 (2004)

    Article  Google Scholar 

  7. V.A. Sarychev, Positions of Relative Equilibrium for Two Bodies Connected by a Spherical Hinge in a Circular Orbit. Cosm. Res. 5(3), 360–364 (1967)

    Google Scholar 

  8. P. Santini, P. Gasbarri, Dynamics of Multibody Systems in Space Environment Lagrangian vs. Eurelian Approach. Acta. Astronautica. 54(1), 1–24 (2004)

    Article  MathSciNet  Google Scholar 

  9. A.K. Misra, M.S. Nixon, V.J. Modi, Nonlinear Dynamics of Two Body Tethered Satellite Systems: Constant Length Case. J. Astronaut. Sci. 49(2), 219–236 (2001)

    MathSciNet  Google Scholar 

  10. A.K. Misra, V.J. Modi, Three-Dimensional Dynamics and Control of Tether-Connected N-Body Systems. Acta. Astronautica. 26(2), 77–84 (1992)

    Article  Google Scholar 

  11. E.C. Lorenzini, A Three-Mass Tethered System for Micro-g/Variable-g Applications. J. Guid. Control. Dyn. 10(2), 242–249 (1987)

    Article  Google Scholar 

  12. M. Keshmiri, A.K. Misra, V.J. Modi, General Formulation for N-Body Tethered Satellite System Dynamics. J. Guid. Control. Dyn. 19(1), 75–83 (1996)

    Article  MATH  Google Scholar 

  13. A.K. Misra, Z. Amier, V.J. Modi, Attitude Dynamics of Three-body Tethered Systems. Acta. Astronautica. 17(10), 1059–1068 (1988)

    Article  MATH  Google Scholar 

  14. S. Kalantzis, V.J. Modi et al., Order-N Formulation and Dynamics of Multibody Tethered Systems. J. Guid. Control. Dyn. 21(2), 277–285 (1998)

    Article  Google Scholar 

  15. G. Cheng, Y. Liu, Global Dynamical Behavior of a Three-Body System with Flexible Connection in the Gravitational Field. Arch. Appl. Mech. 69, 47–54 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Lavagna, A.E. Finzi, Large Multi-Hinged Space Systems: a Parametric Stability Analysis. Acta. Astronautica. 54(4), 295–305 (2004)

    Article  Google Scholar 

  17. A.K. Misra, Equilibrium Configurations of Tethered Three-Body Systems and Their Stability. J. Astronaut. Sci. 50(3), 241–253 (2002)

    MathSciNet  Google Scholar 

  18. A.A. Corrêa, G. Gómez, Equilibrium Configurations of a Four-Body Tethered System. J. Guid. Control. Dyn. 29(6), 1430–1434 (2006)

    Article  Google Scholar 

  19. A. Sarychev, Equilibria of a Double Pendulum in a Circular Orbit. Acta. Astronautica. 44(1), 63–65 (1999)

    Article  Google Scholar 

  20. A.D. Guerman, Equilibria of Multibody Chain in Orbit Plane. J. Guid. Control. Dyn. 26(6), 942–948 (2003)

    Article  Google Scholar 

  21. A.D. Guerman, Spatial Equilibria of Multibody Chain in a Circular Orbit. Acta. Astronautica. 58, 1–14 (2006)

    Article  Google Scholar 

  22. G. Gómez, J. Llibre, R. Martínez, C. Simó, Dynamics and Mission Design near Libration Points-Volume 1. Fundamentals: The Case of Collinear Libration Points (World Scientific, Singapore, 2001)

    Google Scholar 

  23. Meyer K R, Hall R. Hamiltonian Mechanics and the n-Body Problem. Springer-Verlag, Applied Mathematical Sciences, 1992.

  24. Koon W S, Lo M W, Marsden J E, Ross S D. Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer, New York, 2007.

  25. W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Koon W S, Lo M W, Marsden J E. The Genesis Trajectory and Heteroclinic Connections. AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 1999, AAS Paper 99–451.

  27. M. Xu, S. Xu, Study on Stationkeeping for Halo Orbits at EL 1: Dynamics Modeling and Controller Designing. Trans. of the Jpn. Soc. for Aeronaut. and Space Sci. 55(5), 274–285 (2012)

    Article  Google Scholar 

  28. M. Xu, S.J. Xu, Nonlinear Dynamical Analysis for Displaced Orbits above the Planet. Celest. Mech. Dyn. Astron. 102(4), 327–353 (2008)

    Article  MATH  Google Scholar 

  29. M. Xu, S. Xu, J 2 Invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5), 585–595 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Xu, Y. Wang, S. Xu, On the Existence of J 2 Invariant Relative Orbit from the Dynamical System Point of View. Celest. Mech. Dyn. Astron. 112(4), 427–444 (2012)

    Article  Google Scholar 

  31. P. Mihai, C. Vladimir, The Domain of Initial Conditions for the Class of Three-Dimensional Halo Periodical Orbits. Acta. Astronautica. 36, 193–196 (1995)

    Article  Google Scholar 

  32. D.L. Richardson, Analytic Construction of Periodic Orbits About the Collinear Points. Celest. Mech. 22(3), 241–253 (1980)

    Article  MATH  Google Scholar 

  33. B.T. Barden, K.C. Howell, Application of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission. J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors are very grateful to the associate editor and two anonymous reviewers for their helpful comments and suggestions on revising the manuscript. The research is supported by the National Natural Science Foundation of China (11172020), and Talent Foundation supported by the Fundamental Research Funds for the Central Universities. The authors wish to thank Shijie Xu for the many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Wei, Y. & Liu, S. Nonlinear Dynamics of a Two-Chain, Three-Body Formation System. J of Astronaut Sci 59, 609–628 (2012). https://doi.org/10.1007/s40295-014-0014-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-014-0014-0

Keywords

Navigation