Advertisement

Low Density Lipoprotein (LDL) Cholesterol as a Causal Role for Atherosclerotic Disease: Potential Role of PCSK9 Inhibitors

  • Rita Del PintoEmail author
  • Davide Grassi
  • Giuliana Properzi
  • Giovambattista Desideri
  • Claudio Ferri
Review article
  • 21 Downloads

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9)-related discoveries of the turn of the century have translated into substantial novelty in dyslipidemia treatment in the last 5 years. With chronic preventable atherosclerotic cardiovascular diseases (ASCVD) representing an epidemic of morbidity and mortality worldwide, low-density lipoprotein cholesterol (LDL-c) reduction represents a public health priority. By overcoming two major statin-related issues, namely intolerance and ineffectiveness, PCSK9 inhibitors have offered a safe and effective option in selected clinical settings where LDL-c reduction is required. Herein, we recapitulate recent findings, clinical applications, and ASCVD prevention potential of PCSK9 inhibition, with focus on anti-PCSK9 monoclonal antibodies, evolocumab and alirocumab.

Keywords

Atherosclerotic plaque Cardiovascular diseases Cholesterol, LDL Proprotein convertases, subtilisin–kexin family Antibodies, monoclonal Anticholesteremic agents 

Notes

Author contributions

RDP and CF conceived the review. RDP, DG, GP, GD and CF drafted the manuscript. GD and CF supervised the manuscript drafting. All the authors read and commented on the manuscript and gave their final approval to the submitted version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.Google Scholar
  2. 2.
    Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37:2999–3058.Google Scholar
  3. 3.
    Del Pinto R, Ferri C. Hypertension management at older age: an update. High Blood Press Cardiovasc Prev. 2019;26:27–36.Google Scholar
  4. 4.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J Oxf Univ Press. 2016;37:2315–81.Google Scholar
  5. 5.
    Del Pinto R, Ferri C. Inflammation-accelerated senescence and the cardiovascular system: mechanisms and perspectives. Int J Mol Sci. 2018.  https://doi.org/10.3390/ijms19123701.Google Scholar
  6. 6.
    Del Pinto R, Pietropaoli D, Ferri C. Diastolic blood pressure and risk profile in renal and cardiovascular diseases Results from the SPRINT trial. J Am Soc Hypertens. 2018;12:513.e3–523.e3.Google Scholar
  7. 7.
    Townsend RR, Chang TI, Cohen DL, Cushman WC, Evans GW, Glasser SP, et al. Orthostatic changes in systolic blood pressure among SPRINT participants at baseline. J Am Soc Hypertens. 2016;10:847–56.Google Scholar
  8. 8.
    Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.Google Scholar
  9. 9.
    Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4:CD011748.Google Scholar
  10. 10.
    Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.Google Scholar
  11. 11.
    Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100:928–33.Google Scholar
  12. 12.
    Abifadel M, Elbitar S, El Khoury P, Ghaleb Y, Chémaly M, Moussalli M-L, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014;16:439.Google Scholar
  13. 13.
    Kent ST, Rosenson RS, Avery CL, Chen Y-DI, Correa A, Cummings SR, et al. Loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet. 2017;10:e001632.Google Scholar
  14. 14.
    Rosenson RS, Hegele RA, Fazio S, Cannon CP. The evolving future of PCSK9 inhibitors. J Am Coll Cardiol. 2018;72:314–29.Google Scholar
  15. 15.
    Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–7.Google Scholar
  16. 16.
    Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169(906–915):e13.Google Scholar
  17. 17.
    Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.Google Scholar
  18. 18.
    Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–69.Google Scholar
  19. 19.
    Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.Google Scholar
  20. 20.
    Roth EM, Taskinen M-R, Ginsberg HN, Kastelein JJP, Colhoun HM, Robinson JG, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol. 2014;176:55–61.Google Scholar
  21. 21.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.Google Scholar
  22. 22.
    Kastelein JJP, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.Google Scholar
  23. 23.
    Roth EM, Moriarty PM, Bergeron J, Langslet G, Manvelian G, Zhao J, et al. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 2016;254:254–62.Google Scholar
  24. 24.
    Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.Google Scholar
  25. 25.
    Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.Google Scholar
  26. 26.
    Baragetti A, Grejtakova D, Casula M, Olmastroni E, Jotti GS, Norata GD, et al. Proprotein convertase subtilisin–kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: facts and gaps. Pharmacol Res. 2018;130:1–11.Google Scholar
  27. 27.
    Shapiro MD, Minnier J, Tavori H, Kassahun H, Flower A, Somaratne R, et al. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab. J Am Heart Assoc. 2019;8:e010932.Google Scholar
  28. 28.
    O’Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al. Lipoprotein(a), PCSK9 inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation. 2018.  https://doi.org/10.1161/circulationaha.118.037184.Google Scholar
  29. 29.
    Cao Y-X, Li S, Liu H-H, Li J-J. Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2018;8:e022348.Google Scholar
  30. 30.
    Sahebkar A, Di Giosia P, Stamerra CA, Grassi D, Pedone C, Ferretti G, et al. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br J Clin Pharmacol. 2016;81:1175–90.Google Scholar
  31. 31.
    Kühnast S, van der Hoorn JWA, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.Google Scholar
  32. 32.
    Bernelot Moens SJ, Neele AE, Kroon J, van der Valk FM, Van den Bossche J, Hoeksema MA, et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur Heart J. 2017;38:1584–93.Google Scholar
  33. 33.
    Liu A, Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Internal Med. 2018;10:193–210.  https://doi.org/10.1111/joim.12758.Google Scholar
  34. 34.
    Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–21.Google Scholar
  35. 35.
    Cabezas KG, Gómez-Fernandez CR, Vazquez-Padron R. A comprehensive review of oxidative stress as the underlying mechanism in atherosclerosis and the inefficiency of antioxidants to revert this process. Curr Pharm Des. 2019.  https://doi.org/10.2174/1381612825666190116103323.Google Scholar
  36. 36.
    Pietropaoli D, Ortu E, Severino M, Ciarrocchi I, Gatto R, Monaco A. Glycation and oxidative stress in the failure of dental implants: a case series. BMC Res Notes. 2013;6:296.Google Scholar
  37. 37.
    Paciullo F, Fallarino F, Bianconi V, Mannarino MR, Sahebkar A, Pirro M. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol. 2017;232:2330–8.Google Scholar
  38. 38.
    Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–6.Google Scholar
  39. 39.
    Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8:2267.Google Scholar
  40. 40.
    Zhu L, Giunzioni I, Tavori H, Covarrubias R, Ding L, Zhang Y, et al. Loss of macrophage low-density lipoprotein receptor-related protein 1 confers resistance to the antiatherogenic effects of tumor necrosis factor-α inhibition. Arterioscler Thromb Vasc Biol. 2016;36:1483–95.Google Scholar
  41. 41.
    Roth EM, Goldberg AC, Catapano AL, Torri A, Yancopoulos GD, Stahl N, et al. Antidrug antibodies in patients treated with alirocumab. N Engl J Med. 2017;376:1589–90.Google Scholar
  42. 42.
    Roth EM, Goldberg A, Catapano A, Torri A, Brunet A, Lecorps G, et al. Impact of anti-drug antibodies to alirocumab on LDL-c lowering efficacy and safety. J Am Coll Cardiol. 2016.  https://doi.org/10.1016/s0735-1097(16)31864-2.Google Scholar
  43. 43.
    Dixon DL, Buckley LF, Trankle CR, Kadariya D, Abbate A. Clinical utility of evolocumab in the management of hyperlipidemia: patient selection and follow-up. Drug Des Devel Ther. 2017;11:2121–9.Google Scholar
  44. 44.
    Henry CA, Lyon RA, Ling H. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction. Vasc Health Risk Manag. 2016;12:163–9.Google Scholar
  45. 45.
    Ridker PM, Tardif J-C, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376:1517–26.Google Scholar
  46. 46.
    Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112:429–42.Google Scholar
  47. 47.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.Google Scholar
  48. 48.
    Robinson JG, Rosenson RS, Farnier M, Chaudhari U, Sasiela WJ, Merlet L, et al. Safety of very low low-density lipoprotein cholesterol levels with alirocumab: pooled data from randomized trials. J Am Coll Cardiol. 2017;69:471–82.Google Scholar
  49. 49.
    Khan AR, Riaz H, Farid T, Bolli R. Neurocognitive risk with PCSK9 inhibitors: need for more robust evidence. J Am Coll Cardiol. 2017;69:2468–9.Google Scholar
  50. 50.
    Mannarino MR, Sahebkar A, Bianconi V, Serban M-C, Banach M, Pirro M. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol. 2018;12:1123–32.Google Scholar
  51. 51.
    Giugliano RP, Mach F, Zavitz K, Kurtz C, Im K, Kanevsky E, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633–43.Google Scholar
  52. 52.
    Paquette M, Saavedra YGL, Poirier J, Théroux L, Dea D, Baass A, et al. Loss-of-function PCSK9 mutations are not associated with alzheimer disease. J Geriatr Psychiatry Neurol. 2018;31:90–6.Google Scholar
  53. 53.
    Handelsman Y, Lepor NE. PCSK9 Inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: a review. J Am Heart Assoc. 2018;10:10.  https://doi.org/10.1161/jaha.118.008953.Google Scholar
  54. 54.
    Cao Y-X, Liu H-H, Dong Q-T, Li S, Li J-J. Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20:1391–8.Google Scholar
  55. 55.
    Blom DJ, Djedjos CS, Monsalvo ML, Bridges I, Wasserman SM, Scott R, et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117:731–41.Google Scholar
  56. 56.
    Poli A, Barbagallo CM, Cicero AFG, Corsini A, Manzato E, Trimarco B, et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol Res. 2018;134:51–60.Google Scholar
  57. 57.
    Poli A, Visioli F. Pharmacology of nutraceuticals with lipid lowering properties. High Blood Press Cardiovasc Prev. 2019;26:113–8.Google Scholar
  58. 58.
    Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A. Regulation of PCSK9 by nutraceuticals. Pharmacol Res. 2017;120:157–69.Google Scholar
  59. 59.
    Johnston TP, Korolenko TA, Pirro M, Sahebkar A. Preventing cardiovascular heart disease: promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res. 2017;120:219–25.Google Scholar
  60. 60.
    Landmesser U, Chapman MJ, Farnier M, Gencer B, Gielen S, Hovingh GK, et al. European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur Heart J. 2017;38:2245–55.Google Scholar
  61. 61.
    Landmesser U, Chapman MJ, Stock JK, Amarenco P, Belch JJF, Borén J, et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J. 2018;39:1131–43.Google Scholar
  62. 62.
    Committee Writing, Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD Jr, et al. ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the american college of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2016;2016(68):92–125.Google Scholar
  63. 63.
    Anderson TJ, Grégoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.Google Scholar
  64. 64.
    Kiyosue A, Honarpour N, Kurtz C, Xue A, Wasserman SM, Hirayama A. A phase 3 study of evolocumab (AMG 145) in statin-treated Japanese patients at high cardiovascular risk. Am J Cardiol. 2016;117:40–7.Google Scholar
  65. 65.
    Website of ClinicalTrials.gov—Search query: [LDL | “antibodies”]. https://clinicaltrials.gov/ct2/results?cond=&term=LDL&intr=%22Antibodies%22&cntry=&state=&city=&dist=&Search=Search. Accessed 28 Feb 2019.
  66. 66.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.Google Scholar
  67. 67.
    Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.Google Scholar
  68. 68.
    Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation. 2018;137:338–50.Google Scholar
  69. 69.
    Sabatine MS, De Ferrari GM, Giugliano RP, Huber K, Lewis BS, Ferreira J, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease. Circulation. 2018;138:756–66.Google Scholar
  70. 70.
    Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.Google Scholar
  71. 71.
    Raal FJ, Hovingh GK, Blom D, Santos RD, Harada-Shiba M, Bruckert E, et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 2017;5:280–90.Google Scholar
  72. 72.
    Fahy EF, McCarthy E, Steinhagen-Thiessen E, Vaughan CJ. A case of autosomal recessive hypercholesterolemia responsive to proprotein convertase subtilisin/kexin 9 inhibition. J Clin Lipidol. 2017;11:287–8.Google Scholar
  73. 73.
    Rodríguez-Jiménez C, Gómez-Coronado D, Frías Vargas M, Cerrato F, Lahoz C, Saban-Ruiz J, et al. A new variant (c.1A>G) in LDLRAP1 causing autosomal recessive hypercholesterolemia: Characterization of the defect and response to PCSK9 inhibition. Atherosclerosis. 2019;10:10.  https://doi.org/10.1016/j.atherosclerosis.2019.01.010.Google Scholar
  74. 74.
    Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.Google Scholar
  75. 75.
    Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315:1580–90.Google Scholar
  76. 76.
    Puri R, Nissen SE, Somaratne R, Cho L, Kastelein JJP, Ballantyne CM, et al. Impact of PCSK9 inhibition on coronary atheroma progression: Rationale and design of global assessment of plaque regression with a PCSK9 antibody as measured by intravascular ultrasound (GLAGOV). Am Heart J. 2016;176:83–92.Google Scholar
  77. 77.
    Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJP, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–84.Google Scholar
  78. 78.
    Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.Google Scholar
  79. 79.
    Kastelein JJP, Hovingh GK, Langslet G, Baccara-Dinet MT, Gipe DA, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody alirocumab vs placebo in patients with heterozygous familial hypercholesterolemia. J Clin Lipidol. 2017;11(195–203):e4.Google Scholar
  80. 80.
    Hartgers ML, Defesche JC, Langslet G, Hopkins PN, Kastelein JJP, Baccara-Dinet MT, et al. Alirocumab efficacy in patients with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia. J Clin Lipidol. 2018;12(390–396):e8.Google Scholar
  81. 81.
    Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J Clin Lipidol. 2014;8:554–61.Google Scholar
  82. 82.
    Website of ClinicalTrials.gov. Assessment of atherosclerotic plaque characteristics change by DCE-MRI with alirocumab. https://clinicaltrials.gov/ct2/show/NCT02992301. Accessed 28 Feb 2019.
  83. 83.
    Website of ClinicalTrials.gov. A trial of alirocumab and plaque regression in peripheral arterial disease. https://clinicaltrials.gov/ct2/show/NCT02959047. Accessed 28 Feb 2019.
  84. 84.
    Jukema JW, Szarek M, Zijlstra LE, de Silva HA, Bhatt DL, Bittner VA, et al. Patients with recent acute coronary syndrome and polyvascular disease derive large absolute benefit from alirocumab: ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2019.  https://doi.org/10.1016/j.jacc.2019.03.013.Google Scholar
  85. 85.
    Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018.  https://doi.org/10.1016/j.jacc.2018.11.003.Google Scholar
  86. 86.
    Gencer B, Koskinas KC, Räber L, Karagiannis A, Nanchen D, Auer R, et al. Eligibility for PCSK9 Inhibitors According to American College of Cardiology (ACC) and European Society of Cardiology/European Atherosclerosis Society (ESC/EAS) Guidelines After Acute Coronary Syndromes. J Am Heart Assoc. 2017.  https://doi.org/10.1161/jaha.117.006537.Google Scholar
  87. 87.
    Del Pinto R, Ferri C, Cominelli F. Vitamin D axis in inflammatory bowel diseases: role, current uses and future perspectives. Int J Mol Sci. 2017.  https://doi.org/10.3390/ijms18112360.Google Scholar
  88. 88.
    Pietropaoli D, Del Pinto R, Ferri C, Wright JT Jr, Giannoni M, Ortu E, et al. Poor oral health and blood pressure control among US hypertensive adults: results from the national health and nutrition examination survey 2009 to 2014. Hypertension. 2018;72:1365–73.Google Scholar
  89. 89.
    Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.Google Scholar
  90. 90.
    Kosmas CE, Muñoz Estrella A, Sourlas A, Silverio D, Hilario E, Montan PD, et al. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018.  https://doi.org/10.3390/diseases6030063.Google Scholar
  91. 91.
    Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.Google Scholar
  92. 92.
    Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, et al. Peptide-based anti-PCSK9 vaccines—an approach for long-term LDLc management. PLoS One. 2014;9:e114469.Google Scholar
  93. 93.
    Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017;38:2499–507.Google Scholar
  94. 94.
    Momtazi-Borojeni AA, Jaafari MR, Badiee A, Sahebkar A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis. 2019;283:69–78.Google Scholar
  95. 95.
    Website of ClinicalTrials.gov. Study assessing safety, immunogenicity and LDLc—lowering activity of 2 PCSK9 targeting AFFITOPE vaccines in healthy subjects. https://clinicaltrials.gov/ct2/show/NCT02508896. Accessed 28 Feb 2019.

Copyright information

© Italian Society of Hypertension 2019

Authors and Affiliations

  1. 1.Department of Life, Health and Environmental SciencesSan Salvatore Hospital, University of L’AquilaL’AquilaItaly

Personalised recommendations