Skip to main content
Log in

Low Density Lipoprotein (LDL) Cholesterol as a Causal Role for Atherosclerotic Disease: Potential Role of PCSK9 Inhibitors

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9)-related discoveries of the turn of the century have translated into substantial novelty in dyslipidemia treatment in the last 5 years. With chronic preventable atherosclerotic cardiovascular diseases (ASCVD) representing an epidemic of morbidity and mortality worldwide, low-density lipoprotein cholesterol (LDL-c) reduction represents a public health priority. By overcoming two major statin-related issues, namely intolerance and ineffectiveness, PCSK9 inhibitors have offered a safe and effective option in selected clinical settings where LDL-c reduction is required. Herein, we recapitulate recent findings, clinical applications, and ASCVD prevention potential of PCSK9 inhibition, with focus on anti-PCSK9 monoclonal antibodies, evolocumab and alirocumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Consistent with guidelines, documented clinical ASCVD includes previous acute myocardial infarction, acute coronary syndrome (ACS), coronary revascularization and other arterial revascularization procedures, stroke and transient ischaemic attack, aortic aneurysm, and peripheral arterial disease. Unequivocally documented ASCVD on imaging includes plaque on coronary angiography or carotid ultrasound. It does not include some increase in continuous imaging parameters such as intima–media thickness of the carotid artery.

References

  1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  Google Scholar 

  2. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37:2999–3058.

    Article  Google Scholar 

  3. Del Pinto R, Ferri C. Hypertension management at older age: an update. High Blood Press Cardiovasc Prev. 2019;26:27–36.

    Article  Google Scholar 

  4. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J Oxf Univ Press. 2016;37:2315–81.

    Google Scholar 

  5. Del Pinto R, Ferri C. Inflammation-accelerated senescence and the cardiovascular system: mechanisms and perspectives. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19123701.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Del Pinto R, Pietropaoli D, Ferri C. Diastolic blood pressure and risk profile in renal and cardiovascular diseases Results from the SPRINT trial. J Am Soc Hypertens. 2018;12:513.e3–523.e3.

    Google Scholar 

  7. Townsend RR, Chang TI, Cohen DL, Cushman WC, Evans GW, Glasser SP, et al. Orthostatic changes in systolic blood pressure among SPRINT participants at baseline. J Am Soc Hypertens. 2016;10:847–56.

    Article  Google Scholar 

  8. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.

    Article  CAS  Google Scholar 

  9. Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4:CD011748.

    PubMed  Google Scholar 

  10. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    Article  CAS  Google Scholar 

  11. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100:928–33.

    Article  CAS  Google Scholar 

  12. Abifadel M, Elbitar S, El Khoury P, Ghaleb Y, Chémaly M, Moussalli M-L, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014;16:439.

    Article  Google Scholar 

  13. Kent ST, Rosenson RS, Avery CL, Chen Y-DI, Correa A, Cummings SR, et al. Loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet. 2017;10:e001632.

    Article  CAS  Google Scholar 

  14. Rosenson RS, Hegele RA, Fazio S, Cannon CP. The evolving future of PCSK9 inhibitors. J Am Coll Cardiol. 2018;72:314–29.

    Article  CAS  Google Scholar 

  15. Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–7.

    Article  CAS  Google Scholar 

  16. Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169(906–915):e13.

    Google Scholar 

  17. Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.

    Article  CAS  Google Scholar 

  18. Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–69.

    Article  Google Scholar 

  19. Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.

    Article  CAS  Google Scholar 

  20. Roth EM, Taskinen M-R, Ginsberg HN, Kastelein JJP, Colhoun HM, Robinson JG, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol. 2014;176:55–61.

    Article  Google Scholar 

  21. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    Article  CAS  Google Scholar 

  22. Kastelein JJP, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Roth EM, Moriarty PM, Bergeron J, Langslet G, Manvelian G, Zhao J, et al. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 2016;254:254–62.

    Article  CAS  Google Scholar 

  24. Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  CAS  Google Scholar 

  25. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.

    Article  CAS  Google Scholar 

  26. Baragetti A, Grejtakova D, Casula M, Olmastroni E, Jotti GS, Norata GD, et al. Proprotein convertase subtilisin–kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: facts and gaps. Pharmacol Res. 2018;130:1–11.

    Article  CAS  Google Scholar 

  27. Shapiro MD, Minnier J, Tavori H, Kassahun H, Flower A, Somaratne R, et al. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab. J Am Heart Assoc. 2019;8:e010932.

    Article  Google Scholar 

  28. O’Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al. Lipoprotein(a), PCSK9 inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation. 2018. https://doi.org/10.1161/circulationaha.118.037184.

    Article  Google Scholar 

  29. Cao Y-X, Li S, Liu H-H, Li J-J. Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2018;8:e022348.

    Article  Google Scholar 

  30. Sahebkar A, Di Giosia P, Stamerra CA, Grassi D, Pedone C, Ferretti G, et al. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br J Clin Pharmacol. 2016;81:1175–90.

    Article  CAS  Google Scholar 

  31. Kühnast S, van der Hoorn JWA, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.

    Article  Google Scholar 

  32. Bernelot Moens SJ, Neele AE, Kroon J, van der Valk FM, Van den Bossche J, Hoeksema MA, et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur Heart J. 2017;38:1584–93.

    Article  Google Scholar 

  33. Liu A, Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Internal Med. 2018;10:193–210. https://doi.org/10.1111/joim.12758.

    Article  CAS  Google Scholar 

  34. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–21.

    Article  CAS  Google Scholar 

  35. Cabezas KG, Gómez-Fernandez CR, Vazquez-Padron R. A comprehensive review of oxidative stress as the underlying mechanism in atherosclerosis and the inefficiency of antioxidants to revert this process. Curr Pharm Des. 2019. https://doi.org/10.2174/1381612825666190116103323.

    Article  Google Scholar 

  36. Pietropaoli D, Ortu E, Severino M, Ciarrocchi I, Gatto R, Monaco A. Glycation and oxidative stress in the failure of dental implants: a case series. BMC Res Notes. 2013;6:296.

    Article  CAS  Google Scholar 

  37. Paciullo F, Fallarino F, Bianconi V, Mannarino MR, Sahebkar A, Pirro M. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol. 2017;232:2330–8.

    Article  CAS  Google Scholar 

  38. Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–6.

    Article  CAS  Google Scholar 

  39. Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8:2267.

    Article  Google Scholar 

  40. Zhu L, Giunzioni I, Tavori H, Covarrubias R, Ding L, Zhang Y, et al. Loss of macrophage low-density lipoprotein receptor-related protein 1 confers resistance to the antiatherogenic effects of tumor necrosis factor-α inhibition. Arterioscler Thromb Vasc Biol. 2016;36:1483–95.

    Article  CAS  Google Scholar 

  41. Roth EM, Goldberg AC, Catapano AL, Torri A, Yancopoulos GD, Stahl N, et al. Antidrug antibodies in patients treated with alirocumab. N Engl J Med. 2017;376:1589–90.

    Article  Google Scholar 

  42. Roth EM, Goldberg A, Catapano A, Torri A, Brunet A, Lecorps G, et al. Impact of anti-drug antibodies to alirocumab on LDL-c lowering efficacy and safety. J Am Coll Cardiol. 2016. https://doi.org/10.1016/s0735-1097(16)31864-2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dixon DL, Buckley LF, Trankle CR, Kadariya D, Abbate A. Clinical utility of evolocumab in the management of hyperlipidemia: patient selection and follow-up. Drug Des Devel Ther. 2017;11:2121–9.

    Article  CAS  Google Scholar 

  44. Henry CA, Lyon RA, Ling H. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction. Vasc Health Risk Manag. 2016;12:163–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ridker PM, Tardif J-C, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376:1517–26.

    Article  CAS  Google Scholar 

  46. Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112:429–42.

    Article  CAS  Google Scholar 

  47. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    Article  CAS  Google Scholar 

  48. Robinson JG, Rosenson RS, Farnier M, Chaudhari U, Sasiela WJ, Merlet L, et al. Safety of very low low-density lipoprotein cholesterol levels with alirocumab: pooled data from randomized trials. J Am Coll Cardiol. 2017;69:471–82.

    Article  CAS  Google Scholar 

  49. Khan AR, Riaz H, Farid T, Bolli R. Neurocognitive risk with PCSK9 inhibitors: need for more robust evidence. J Am Coll Cardiol. 2017;69:2468–9.

    Article  Google Scholar 

  50. Mannarino MR, Sahebkar A, Bianconi V, Serban M-C, Banach M, Pirro M. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol. 2018;12:1123–32.

    Article  Google Scholar 

  51. Giugliano RP, Mach F, Zavitz K, Kurtz C, Im K, Kanevsky E, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633–43.

    Article  CAS  Google Scholar 

  52. Paquette M, Saavedra YGL, Poirier J, Théroux L, Dea D, Baass A, et al. Loss-of-function PCSK9 mutations are not associated with alzheimer disease. J Geriatr Psychiatry Neurol. 2018;31:90–6.

    Article  Google Scholar 

  53. Handelsman Y, Lepor NE. PCSK9 Inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: a review. J Am Heart Assoc. 2018;10:10. https://doi.org/10.1161/jaha.118.008953.

    Article  Google Scholar 

  54. Cao Y-X, Liu H-H, Dong Q-T, Li S, Li J-J. Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20:1391–8.

    Article  CAS  Google Scholar 

  55. Blom DJ, Djedjos CS, Monsalvo ML, Bridges I, Wasserman SM, Scott R, et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117:731–41.

    Article  CAS  Google Scholar 

  56. Poli A, Barbagallo CM, Cicero AFG, Corsini A, Manzato E, Trimarco B, et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol Res. 2018;134:51–60.

    Article  CAS  Google Scholar 

  57. Poli A, Visioli F. Pharmacology of nutraceuticals with lipid lowering properties. High Blood Press Cardiovasc Prev. 2019;26:113–8.

    Article  CAS  Google Scholar 

  58. Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A. Regulation of PCSK9 by nutraceuticals. Pharmacol Res. 2017;120:157–69.

    Article  CAS  Google Scholar 

  59. Johnston TP, Korolenko TA, Pirro M, Sahebkar A. Preventing cardiovascular heart disease: promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res. 2017;120:219–25.

    Article  CAS  Google Scholar 

  60. Landmesser U, Chapman MJ, Farnier M, Gencer B, Gielen S, Hovingh GK, et al. European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur Heart J. 2017;38:2245–55.

    CAS  PubMed  Google Scholar 

  61. Landmesser U, Chapman MJ, Stock JK, Amarenco P, Belch JJF, Borén J, et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J. 2018;39:1131–43.

    Article  CAS  Google Scholar 

  62. Committee Writing, Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD Jr, et al. ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the american college of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2016;2016(68):92–125.

    Google Scholar 

  63. Anderson TJ, Grégoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.

    Article  Google Scholar 

  64. Kiyosue A, Honarpour N, Kurtz C, Xue A, Wasserman SM, Hirayama A. A phase 3 study of evolocumab (AMG 145) in statin-treated Japanese patients at high cardiovascular risk. Am J Cardiol. 2016;117:40–7.

    Article  CAS  Google Scholar 

  65. Website of ClinicalTrials.gov—Search query: [LDL | “antibodies”]. https://clinicaltrials.gov/ct2/results?cond=&term=LDL&intr=%22Antibodies%22&cntry=&state=&city=&dist=&Search=Search. Accessed 28 Feb 2019.

  66. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  Google Scholar 

  67. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.

    Article  CAS  Google Scholar 

  68. Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation. 2018;137:338–50.

    Article  CAS  Google Scholar 

  69. Sabatine MS, De Ferrari GM, Giugliano RP, Huber K, Lewis BS, Ferreira J, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease. Circulation. 2018;138:756–66.

    Article  CAS  Google Scholar 

  70. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.

    Article  CAS  Google Scholar 

  71. Raal FJ, Hovingh GK, Blom D, Santos RD, Harada-Shiba M, Bruckert E, et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 2017;5:280–90.

    Article  CAS  Google Scholar 

  72. Fahy EF, McCarthy E, Steinhagen-Thiessen E, Vaughan CJ. A case of autosomal recessive hypercholesterolemia responsive to proprotein convertase subtilisin/kexin 9 inhibition. J Clin Lipidol. 2017;11:287–8.

    Article  Google Scholar 

  73. Rodríguez-Jiménez C, Gómez-Coronado D, Frías Vargas M, Cerrato F, Lahoz C, Saban-Ruiz J, et al. A new variant (c.1A>G) in LDLRAP1 causing autosomal recessive hypercholesterolemia: Characterization of the defect and response to PCSK9 inhibition. Atherosclerosis. 2019;10:10. https://doi.org/10.1016/j.atherosclerosis.2019.01.010.

    Article  CAS  Google Scholar 

  74. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.

    Article  CAS  Google Scholar 

  75. Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315:1580–90.

    Article  CAS  Google Scholar 

  76. Puri R, Nissen SE, Somaratne R, Cho L, Kastelein JJP, Ballantyne CM, et al. Impact of PCSK9 inhibition on coronary atheroma progression: Rationale and design of global assessment of plaque regression with a PCSK9 antibody as measured by intravascular ultrasound (GLAGOV). Am Heart J. 2016;176:83–92.

    Article  CAS  Google Scholar 

  77. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJP, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–84.

    Article  CAS  Google Scholar 

  78. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  Google Scholar 

  79. Kastelein JJP, Hovingh GK, Langslet G, Baccara-Dinet MT, Gipe DA, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody alirocumab vs placebo in patients with heterozygous familial hypercholesterolemia. J Clin Lipidol. 2017;11(195–203):e4.

    Google Scholar 

  80. Hartgers ML, Defesche JC, Langslet G, Hopkins PN, Kastelein JJP, Baccara-Dinet MT, et al. Alirocumab efficacy in patients with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia. J Clin Lipidol. 2018;12(390–396):e8.

    Google Scholar 

  81. Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J Clin Lipidol. 2014;8:554–61.

    Article  Google Scholar 

  82. Website of ClinicalTrials.gov. Assessment of atherosclerotic plaque characteristics change by DCE-MRI with alirocumab. https://clinicaltrials.gov/ct2/show/NCT02992301. Accessed 28 Feb 2019.

  83. Website of ClinicalTrials.gov. A trial of alirocumab and plaque regression in peripheral arterial disease. https://clinicaltrials.gov/ct2/show/NCT02959047. Accessed 28 Feb 2019.

  84. Jukema JW, Szarek M, Zijlstra LE, de Silva HA, Bhatt DL, Bittner VA, et al. Patients with recent acute coronary syndrome and polyvascular disease derive large absolute benefit from alirocumab: ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2019. https://doi.org/10.1016/j.jacc.2019.03.013.

    Article  PubMed  Google Scholar 

  85. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.11.003.

    Article  PubMed  Google Scholar 

  86. Gencer B, Koskinas KC, Räber L, Karagiannis A, Nanchen D, Auer R, et al. Eligibility for PCSK9 Inhibitors According to American College of Cardiology (ACC) and European Society of Cardiology/European Atherosclerosis Society (ESC/EAS) Guidelines After Acute Coronary Syndromes. J Am Heart Assoc. 2017. https://doi.org/10.1161/jaha.117.006537.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Del Pinto R, Ferri C, Cominelli F. Vitamin D axis in inflammatory bowel diseases: role, current uses and future perspectives. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18112360.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pietropaoli D, Del Pinto R, Ferri C, Wright JT Jr, Giannoni M, Ortu E, et al. Poor oral health and blood pressure control among US hypertensive adults: results from the national health and nutrition examination survey 2009 to 2014. Hypertension. 2018;72:1365–73.

    Article  CAS  Google Scholar 

  89. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.

    Article  CAS  Google Scholar 

  90. Kosmas CE, Muñoz Estrella A, Sourlas A, Silverio D, Hilario E, Montan PD, et al. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018. https://doi.org/10.3390/diseases6030063.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.

    Article  CAS  Google Scholar 

  92. Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, et al. Peptide-based anti-PCSK9 vaccines—an approach for long-term LDLc management. PLoS One. 2014;9:e114469.

    Article  Google Scholar 

  93. Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017;38:2499–507.

    Article  CAS  Google Scholar 

  94. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Sahebkar A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis. 2019;283:69–78.

    Article  CAS  Google Scholar 

  95. Website of ClinicalTrials.gov. Study assessing safety, immunogenicity and LDLc—lowering activity of 2 PCSK9 targeting AFFITOPE vaccines in healthy subjects. https://clinicaltrials.gov/ct2/show/NCT02508896. Accessed 28 Feb 2019.

Download references

Author information

Authors and Affiliations

Authors

Contributions

RDP and CF conceived the review. RDP, DG, GP, GD and CF drafted the manuscript. GD and CF supervised the manuscript drafting. All the authors read and commented on the manuscript and gave their final approval to the submitted version of the manuscript.

Corresponding author

Correspondence to Rita Del Pinto.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pinto, R., Grassi, D., Properzi, G. et al. Low Density Lipoprotein (LDL) Cholesterol as a Causal Role for Atherosclerotic Disease: Potential Role of PCSK9 Inhibitors. High Blood Press Cardiovasc Prev 26, 199–207 (2019). https://doi.org/10.1007/s40292-019-00323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-019-00323-7

Keywords

Navigation