Skip to main content
Log in

Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Genetic instability is a defining property of cancer cells and is the basis of various lesions including point mutations, copy number alterations and translocations. Chromosomal instability (CIN) is part of the genetic instability of cancer and consists of copy number alterations in whole or parts of cancer cell chromosomes. CIN is observed in differing degrees in most cancers. In breast cancer, CIN is commonly part of the genomic landscape of the disease and has a higher incidence in aggressive sub-types. Tumor suppressors that are commonly mutated or disabled in cancer, such as p53 and pRB, play roles in protection against CIN, and as a result, their dysfunction contributes to the establishment or tolerance of CIN. Several structural and regulatory proteins of the centromeres and kinetochore, the complex structure that is responsible for the correct distribution of genetic material in the daughter cells during mitosis, are direct or, mostly, indirect transcription targets of p53 and pRB. Thus, despite the absence of structural defects in genes encoding for centromere and kinetochore components, dysfunction of these tumor suppressors may have profound implications for the correct function of the mitotic apparatus contributing to CIN. CIN and its prognostic and therapeutic implications in breast cancer are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13:528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Musacchio A, Desai A. A molecular view of kinetochore assembly and function. Biol. 2017;6:5.

    Article  CAS  Google Scholar 

  3. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakhoum F, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D. The mitotic origin of chromosomal instability. Curr Biol. 2014;24:R148–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK. Mechanisms of genomic instability in breast cancer. Trends Mol Med. 2019; S1471-4914(19)30090-5 [Epub ahead of print].

  7. Danielsen HE, Pradhan M, Novelli M. Revisiting tumour aneuploidy—the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol. 2016;13:291–304.

    Article  CAS  PubMed  Google Scholar 

  8. Pinto AE, André S, Pereira T, Silva G, Soares J. DNA flow cytometry but not telomerase activity as predictor of disease-free survival in pT1-2/N0/G2 breast cancer. Pathobiol. 2006;73:63–70.

    Article  CAS  Google Scholar 

  9. Moureau-Zabotto L, Bouchet C, Cesari D, Uzan S, Lefranc J-P, Antoine M, et al. Combined flow cytometry determination of S-phase fraction and DNA ploidy is an independent prognostic factor in node-negative invasive breast carcinoma: analysis of a series of 271 patients with stage I and II breast cancer. Breast Cancer Res Treat. 2005;91:61–71.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Mu K, Zhou G, Lan L, Auer G, Zetterberg A. Genomic instability and proliferative activity as risk factors for distant metastases in breast cancer. Br J Cancer. 2008;99:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Habermann JK, Doering J, Hautaniemi S, Roblick UJ, Bündgen NK, Nicorici D, et al. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int J Cancer. 2009;124:1552–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinto AE, Pereira T, Santos M, Branco M, Dias A, Silva GL, et al. DNA ploidy is an independent predictor of survival in breast invasive ductal carcinoma: a long-term multivariate analysis of 393 patients. Ann Surg Oncol. 2013;20:1530–7.

    Article  PubMed  Google Scholar 

  13. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38:1043–8.

    Article  CAS  PubMed  Google Scholar 

  14. Szász AM, Li Q, Eklund AC, Sztupinszki Z, Rowan A, Tökés A-M, et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS One. 2013;8:e56707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spears M, Yousif F, Lyttle N, Boutros PC, Munro AF, Twelves C, et al. A four gene signature predicts benefit from anthracyclines: evidence from the BR9601 and MA.5 clinical trials. Oncotarget. 2015;6:31693–31701.

  16. Spears M, Lyttle N, D’Costa A, Chen BE, Yao CQ, Boutros PC, et al. A four gene signature of chromosome instability (CIN4) predicts for benefit from taxanes in the NCIC-CTG MA21 clinical trial. Oncotarget. 2016;7:49099–106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang W, Mao J-H, Zhu W, Jain AK, Liu K, Brown JB, Karpen GH. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat Commun. 2016;7:12619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolhaqueiro ACF, Ponsioen B, Bakker B, Klaasen SJ, Kucukkose E, van Jaarsveld RH, et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat Genet. 2019;51:824–34.

    Article  CAS  PubMed  Google Scholar 

  19. Johnson SD, McClelland SE. Watching cancer cells evolve. Nature. 2019;570:166–7.

    Article  CAS  PubMed  Google Scholar 

  20. Smid M, Hoes M, Sieuwerts AM, Sleijfer S, Zhang Y, Wang Y, et al. Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat. 2011;128:23–30.

    Article  CAS  PubMed  Google Scholar 

  21. A’Hern RP, Jamal-Hanjani M, Szász AM, Johnston SRD, Reis-Filho JS, Roylance R, Swanton C. Taxanes benefit in breast cancer- a role for grade and chromosome stability. Nat Rev Clin Oncol. 2013;10:357–64.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Arribas F, Nuñez-Villar MJ, Lucas AR, Sanchez J, Tejerina A, Schneider J. The S-phase fraction of the aneuploidy cell subpopulation is the biologically relevant one in aneuploidy breast cancers. Breast Cancer Res Treat. 2005;92:77–80.

    Article  CAS  PubMed  Google Scholar 

  23. Persons DL, Robinson RA, Hsu PH, Seelig SA, Borell TJ, Hartmann LC, Jenkins RB. Chromosome-specific aneusomy in carcinoma of the breast. Clin Cancer Res. 1996;2:883–8.

    CAS  PubMed  Google Scholar 

  24. Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su K-C, et al. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell. 2014;25:1983–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pfister K, Pipka JL, Chiang C, Liu Y, Clark RA, et al. Identification of drivers of aneuploidy in breast tumors. Cell Rep. 2018;23:2758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nik-Zainal S, Morganella S. Mutational signatures in breast: the problem at the DNA level. Clin Cancer Res. 2017;23:2617–29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I, et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomark Prev. 2011;20:2183–94.

    Article  Google Scholar 

  28. Jamal-Hanjani M, A’Hern R, Birkbak NJ, et al. Extreme chromosomal instability forecasts improved outcome in ER-negative breast cancer: a prospective validation cohort study from the TACT trial. Ann Oncol. 2015;26:1340–6.

    Article  CAS  PubMed  Google Scholar 

  29. Nath S, Chowdhury A, Dey S, Roychoudhury A, Ganguly A, Bhattacharyya D, Roychoudhury S. Deregulation of Rb-E2F1 axis causes chromosomal instability by engaging the transactivation function of Cdc20-anaphase-promoting complex/cyclosome. Mol Cell Biol. 2015;35:356–69.

    Article  CAS  PubMed  Google Scholar 

  30. Amato A, Schillaci T, Lentini L, Di Leonardo A. CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer. 2009;8:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer. 2006;6:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schvartzman J-M, Duijf PHG, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell. 2011;19:701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berenzeno IM, Piñeiro R, Castillo SD, Pearce W, McGranahan N, Dewhurst SM, et al. Oncogenic PI3CA induces centrosome amplification and tolerance to genome doubling. Nat Commun. 2017;8:1773.

    Article  CAS  Google Scholar 

  34. Crockford A, Zalmas LP, Grönroos E, et al. Cyclin D mediates tolerance of genome-doubling in cancers with functional p53. Ann Oncol. 2017;28:149–56.

    Article  CAS  PubMed  Google Scholar 

  35. Aylon Y, Oren M. p53: guardian of ploidy. Mol Oncol. 2011;5:315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gronroos E, López-García C. Tolerance of chromosomal instability in cancer: mechanisms and therapeutic opportunities. Cancer Res. 2018;78:6529–35.

    Article  CAS  PubMed  Google Scholar 

  37. Bertheau P, Lehmann-Che J, Varna M, et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast. 2013;22:S27–9.

    Article  PubMed  Google Scholar 

  38. Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol. 2010;188:369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S. Loss of centrosome integrity induces p38-p53-p211-dependent G1-S arrest. Nat Cell Biol. 2007;9:160–70.

    Article  CAS  PubMed  Google Scholar 

  40. Pati D, Haddad BR, Haegele A, Thompson H, Kittrell FS, Shepard A, et al. Hormone-induced chromosomal instability in p53-null mammary epithelium. Cancer Res. 2004;64:5608–16.

    Article  CAS  PubMed  Google Scholar 

  41. Burds AA, Schulze Lutum A, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA. 2005;102:11296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rausch T, Jones DTW, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148:59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114–32.

    Article  CAS  PubMed  Google Scholar 

  44. Voutsadakis IA. Chromosome 17 centromere amplification and chromosomal instability (CIN) in breast cancer: Pathogenic and therapeutic implications. Neoplasma. 2019 (in press).

  45. Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013;13:585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weiss MB, Vitolo MI, Mohseni M, Rosen DM, Denmeade SR, Park BH, et al. Deletion of p53 in human mammary epithelial cells causes chromosomal instability and altered therapeutic response. Oncogene. 2010;29:4715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sage J, Straight AF. RB’s original CIN? Genes Dev. 2010;24:1329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on Aurora B kinase for survival. Cancer Discov. 2019;9:230–47.

    Article  PubMed  Google Scholar 

  49. Gong X, Du J, Parsons SH, Merzug FF, Webster Y, Iversen PW, et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 2019;9:248–63.

    Article  PubMed  Google Scholar 

  50. Fukagawa T, Earnshaw WC. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell. 2014;30:496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheeseman IM. The kinetochore. Cold Spring Harb Perspect Biol. 2014;6:a015826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sacristan C, Kops GJPL. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 2015;25:21–8.

    Article  CAS  PubMed  Google Scholar 

  53. Schuyler SC, Wu Y-F, Kuan VJ-W. The Mad1-Mad2 balancing act—a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci. 2012;125:4197–4206.

  54. Wang y, Jin F, Higgins R, McNight K. The current view for the silencing of the spindle assembly checkpoint. Cell Cycle. 2014;13:1694–1701.

  55. Foley EA, Kapoor TM. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol. 2013;14:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science. 2009;323:1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao G, Cheng Y, Gui P, Cui M, Liu W, Wang W, et al. Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment. J Biol Chem. 2019;294:576–92.

    Article  CAS  PubMed  Google Scholar 

  58. Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol. 2012;22:891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamagishi Y, Yang CH, Tanno Y, Watanabe Y. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol. 2012;14:746–52.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao Y, Chen R-H. Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Curr Biol. 2006;16:1764–9.

    Article  CAS  PubMed  Google Scholar 

  61. Yeh C-H, Yu Z-C, Chen P-H, Cheng Y-C, Shieh S-Y. Phosphorylation at threonine 288 by cell cycle checkpoint kinase 2 (CHK2) controls human monopolar spindle 1 (Mps1) kinetochore localization. J Biol Chem. 2014;289:15319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sullivan LL, Chew K, Sullivan BA. Α satellite DNA variation and function of the human centromere. Nucleus. 2017;8:331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dambacher S, Deng W, Hahn M, Sadic D, Fröhlich JJ, Nuber A, et al. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus. 2012;3:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hara M, Fukagawa T. Kinetochore assembly and disassembly during mitotic entry and exit. Curr Opin Cell Biol. 2018;52:73–81.

    Article  CAS  PubMed  Google Scholar 

  65. Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res. 2019;47:1051–69.

    Article  CAS  PubMed  Google Scholar 

  66. Giunta S, Funabiki H. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proc Natl Acad Sci USA. 2017;114:1928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoffman S, Fachinetti D. A time out for CENP-A. Mol Cell Oncol. 2017;4:e1293596.

    Article  CAS  Google Scholar 

  68. Hoffman S, Dumont M, Barra V, Ly P, Nechemia-Arbely Y, McMahon MA, et al. CENP-A is dispensable for mitotic centromere function after initial centromere/kinetochore assembly. Cell Rep. 2016;17:2394–404.

    Article  CAS  Google Scholar 

  69. Mellone BG, Zhang W, Karpen GH. Frodos found: behold the CENP-A “ring” bearers. Cell. 2009;137:409–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montes de Oca R, Gurard-Levin ZA, Berger F, Rehman H, Martel E, Corpet A, et al. The histone chaperone HJURP is a new independent prognostic marker for luminal A breast carcinoma. Mol Oncol. 2015;9:657–674.

  71. Shrestha RL, Ahn GS, Staples MI, Sathyan KM, Karpova TS, Foltz DR, Basrai MA. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget. 2017;8:46781–800.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Network Cancer Genome Atlas. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  74. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:269.

    Article  CAS  Google Scholar 

  75. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA. 2000;97:1148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, et al. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol. 2015;210:11–22.

    Article  CAS  PubMed  Google Scholar 

  77. Liao W-T, Feng Y, Li M-L, Liu G-L, Li M-Z, Zeng M-S, Song L-B. Overexpression of centromere protein H is significantly associated with breast cancer progression and overall patient survival. Chin J Cancer. 2011;30:627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tomonaya T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 2003;63:3511–6.

    Google Scholar 

  79. Thangavelu PU, Lin C-Y, Vaidyanathan S, Nguyen THM, Dray E, Duijf PHG. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer. Oncotarget. 2017;8:62167–82.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, Corominas-Faja B, Rodriguez-Gallego E, Fernández-Arroyo S, et al. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle. 2014;13:1132–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ding M, Jiang J, Yang F, Zheng F, Fang J, Wang Q, et al. Holliday junction recognition protein interacts with and specifies the centromeric assembly of CENP-T. J Biol Chem. 2019;294:968–80.

    Article  CAS  PubMed  Google Scholar 

  82. Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 2013;32:424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee S, Gang J, Jeon SB, Choo SH, Lee B, Kim YG, et al. Molecular cloning and functional analysis of a novel oncogene, cancer-upregulated gene 2 (CUG2). Biochem Biophys Res Commun. 2007;360:633–9.

    Article  CAS  PubMed  Google Scholar 

  84. Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell. 2012;148:487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin S-Y, Lv Y-B, Mao G-X, Chen X-J, Peng F. The effect of centromere protein U silencing by lentiviral mediated RNA interference on the proliferation and apoptosis of breast cancer. Oncol Lett. 2018;16:6721–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu D, Xu S, Deyanat-Yazdi G, Peng SX, Barnes LA, Narla RK, et al. Synthetic lethal strategy identifies a potent and selective TTK and CLK1/2 inhibitor for treatment of triple-negative breast cancer with a compromised G1-S checkpoint. Mol Cancer Ther. 2018;17:1727–38.

    Article  CAS  PubMed  Google Scholar 

  87. Endo H, Ikeda K, Urano T, Horie-Inoue K, I noue S. Terf/TRIM17 stimulates degradation of kinetochore protein ZWINT and regulates cell proliferation. J Biochem. 2012;151:139–144.

  88. Yuan W, Xie S, Wang M, Pan S, Huang X, Xiong M, et al. Bioinformatic analysis of prognostic value of ZW10 interacting protein in lung cancer. Onco Targ Ther. 2018;11:1683–95.

    Article  Google Scholar 

  89. Ying H, Xu Z, Chen M, Zhou S, Liang X, Cai X. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins. Onco Targ Ther. 2018;11:689–702.

    Article  Google Scholar 

  90. Ng CKY, Martelotto LG, Gauthier A, Wen H-C, Piscuoglio S, Lim RS, et al. Intra-tumor genetic heterogeity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 2015;16:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bièche I, Vacher S, Lallemand F, Tozlu-Kara S, Bennani H, Beuzelin M, et al. Expression analysis of mitotic checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy. Mol Cancer. 2011;10:23.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang K, Gao J, Luo M. Identification of key pathways and hub genes in basal-like breast cancer using bioinformatics analysis. Onco Targ Ther. 2019;12:1319–31.

    Article  CAS  Google Scholar 

  93. Ur-Rehman S, Gao Q, Mitsopoulos C, Zvelebil M. ROCK: a resource for integrative breast cancer data analysis. Breast Cancer Res Treat. 2013;139:907–21.

    Article  CAS  PubMed  Google Scholar 

  94. Tang H, Xiao G, Behrens C, Schiller J, Allen J, Chow C-W, et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res. 2013;19:1577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Deursen JM. Rb loss causes cancer by driving mitosis Mad. Cancer Cell. 2007;11:1–3.

    Article  CAS  PubMed  Google Scholar 

  96. Yuan B, Xu Y, Woo J-H, Wang Y, Bae YK, Yoon D-S, et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res. 2006;12:405–10.

    Article  CAS  PubMed  Google Scholar 

  97. Scintu M, Vitale R, Prencipe M, Gallo AP, Bonghi L, Valori VM, et al. Genomic instability and increased expression of BUB1B and MAD2L1 genes in ductal breast carcinoma. Cancer Lett. 2007;254:298–307.

    Article  CAS  PubMed  Google Scholar 

  98. Sun Q, Zhang X, Liu T, Liu X, Geng J, He X, et al. Increased expression of mitotic arrest deficient-like 1 (MAD1L1) is associated with poor prognosis and insensitive to Taxol treatment in breast cancer. Breast Cancer Res Treat. 2013;140:323–30.

    Article  CAS  PubMed  Google Scholar 

  99. Ryan SD, Britigan EMC, Zasadil LM, Witte K, Audhya A, Roopra A, Weaver BA. Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc Natl Acad Sci USA. 2012;109:E2205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J, Cordón-Cardo C, Lowe SW, Benezra R. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell. 2007;11:9–23.

    Article  CAS  PubMed  Google Scholar 

  101. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin BR, Korbel JO, et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 2016;15:2679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takagi K, Miki Y, Shibahara Y, Nakamura Y, Ebata A, Watanabe M, et al. BUB1 immunolocalization in breast carcinoma: its nuclear localization as a potent prognostic factor of the patients. Horm Canc. 2013;4:92–102.

    Article  CAS  Google Scholar 

  103. Maciejczyk A, Szelachowska J, Czapiga B, Matkowski R, Haloń A, Györffy B, Surowiak P. Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15-year follow-up analysis. J Histochem Cytochem. 2013;61:330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baker DJ, Dawlaty MM, Wijshake T, Jeganathan KB, Malureanu L, van Ree JH, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol. 2013;15:96–102.

    Article  CAS  PubMed  Google Scholar 

  105. Ocaña A, Pérez-Peña J, Díez-González L, Sánchez-Corrales V, Templeton A, Seruga B, et al. Transcriptomic analyses identify association between mitotic kinases, PDZ-binding kinase and BUB1, and clinical outcome in breast cancer. Breast Cancer Res Treat. 2016;156:1–8.

    Article  CAS  PubMed  Google Scholar 

  106. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan r, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29:2013–2023.

  107. Yan H, Zhu S, Song C, Liu N, Kang J. Bone morphogenic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells. Cell Signal. 2012;24:961–8.

    Article  CAS  PubMed  Google Scholar 

  108. Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R, Lintunen M, et al. Cdc20 and securing overexpression predict short-term breast cancer survival. Br J Cancer. 2014;110:2905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Daniel J, Coulter J, Woo J-H, Wilsbach K, Gabrielson E. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc Natl Acad Sci USA. 2011;108:5384–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Xu Q, Xu Y, Pan B, Wu L, Ren X, Zhou Y, et al. TTK is a favorable prognostic biomarker for triple-negative breast cancer survival. Oncotarget. 2016;7:81815–29.

    PubMed  PubMed Central  Google Scholar 

  111. King JL, Zhang B, Li Y, Li KP, Ni JJ, Saavedra HI, Dong J-T. TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis. 2018;7:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Voutsadakis IA. The network of pluripotency, epithelial mesenchymal transition and prognosis of breast cancer. Breast Cancer Targ Ther. 2015;7:303–19.

    Article  CAS  Google Scholar 

  113. Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, et al. Disentangling the molecular determinants for cenp-F localization to nuclear pores and kinetochores. EMBO Rep. 2018;19:e44742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. O’Brien SL, Fagan A, Fox EJP, Millikan RC, Culhane AC, Brennan DJ, et al. CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. Int J Cancer. 2007;120:1434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the chromosomal passenger complex. Exp Cell Res. 2012;318:1407–20.

    Article  CAS  PubMed  Google Scholar 

  116. Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K, et al. Aurora B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell. 2011;44:597–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci. 2019;132:jcs223826.

  118. Wiedemuth R, Klink B, Töpfer K, Schröck E, Schackert G, Tatsuka M, Temme A. Survivin safeguards chromosome numbers and protects from aneuploidy independently from p53. Mol Cancer. 2014;13:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tsukahara T, Tanno Y, Watanabe Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature. 2010;467:719–23.

    Article  CAS  PubMed  Google Scholar 

  120. Gohard FH, St-Cyr DJ, Tyers M, Earnshaw WC. Targeting the INCENP IN-box-Aurora B interaction to inhibit CPC activity in vivo. Open Biol. 2014;4:140163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huang H, Lampson M, Efimov A, Yen TJ. Chromosome instability in tumor cells due to defects in Aurora B mediated error correction at kinetochores. Cell Cycle. 2018;17:2622–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang Y, Jiang C, Li H, Lv F, Li X, Qian X, et al. Elevated Aurora B expression contributes to chemoresistance and poor prognosis in breast cancer. Int J Clin Exp Pathol. 2015;8:751–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Larsen SL, Yde CW, Laenkholm A-V, Rasmussen BB, Duun-Henriksen AK, Bak M, et al. Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer. BMC Cancer. 2015;15:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gully CP, Zhang F, Chen J, Yeung JA, Velazquez-Torres G, Wang E, et al. Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol Cancer. 2010;9:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamanaka Y, Heike T, Kumada T, Shibata M, Takaoka Y, Kitano A, et al. Loss of Borealin/DasraB leads to defective cell proliferation, p53 accumulation and early embryonic lethality. Mech Dev. 2008;125:441–50.

    Article  CAS  PubMed  Google Scholar 

  126. Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res. 2017;23:4055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting mitosis in cancer: emerging strategies. Mol Cell. 2015;60:524–36.

    Article  CAS  PubMed  Google Scholar 

  128. Thu KL, Silvester J, Elliott MJ, Ba-alawi W, Duncan MH, Elia AC, et al. Disruption of the anaphage-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. Proc Natl Acad Sci USA. 2018;115:E1570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Knouse KA, Amon A. The micronucleus gets its big break. Nature. 2015;522:162–3.

    Article  CAS  PubMed  Google Scholar 

  131. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Paul A, Edwards J, Pepper C, Mackay S. Inhibitory-Κb kinase (IKK) α and nuclear factor-κB (NFκB)-inducing kinase (NIK) as anti-cancer drug targets. Cells. 2018;7:176.

    Article  CAS  PubMed Central  Google Scholar 

  133. Voutsadakis IA. Immune blockade inhibitors and the radiation abscopal effect in gastrointestinal cancers. World J Gastrointest Oncol. 2018;10:221–7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Narang P, Chen M, Sharma AA, Anderson KS, Wilson MA. The neoepitope landscape of breast cancer: implications for immunotherapy. BMC Cancer. 2019;19:200.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33:676–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bobustuc GC, Kassam AB, Rovin RA, Jeudy S, Smith JS, Isley B, et al. MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, Cyclin B2, Cyclin D1, ERα and survivin inhibition and enhances response to temozolamide. Oncotarget. 2018;9:29727–42.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q, et al. Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 2009;106:8671–6.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Janssen A, Kops GJPL, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA. 2009;106:19108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Schmidt M, Budirahardja Y, Klompmaker R, Medema RH. Ablation of the spindle assembly checkpoint by a compound targeting Mps1. EMBO Rep. 2005;6:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegration on multipolar spindles. Sci Transl Med 2014;6:229ra43.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Ethics declarations

Conflict of interest

IAV declares no conflicts of interest related to this article.

Funding

No funding was received from any source to perform this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutsadakis, I.A. Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers. Mol Diagn Ther 23, 707–721 (2019). https://doi.org/10.1007/s40291-019-00420-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00420-2

Navigation