Molecular Diagnosis & Therapy

, Volume 23, Issue 2, pp 245–261 | Cite as

Oxidative Stress in β-Thalassemia

  • Eitan FibachEmail author
  • Mutaz Dana
Review Article


Cell oxidative status, which represents the balance between oxidants and antioxidants, is involved in normal functions. Under pathological conditions, there is a shift toward the oxidants, leading to oxidative stress, which is cytotoxic, causing oxidation of cellular components that result in cell death and organ damage. Thalassemia is a hereditary hemolytic anemia caused by mutations in globin genes that cause reduced or complete absence of specific globin chains (commonly, α or β). Although oxidative stress is not the primary etiology of thalassemia, it mediates several of its pathologies. The main causes of oxidative stress in thalassemia are the degradation of the unstable hemoglobin and iron overload—both stimulate the production of excess free radicals. The symptoms aggravated by oxidative stress include increased hemolysis, ineffective erythropoiesis and functional failure of vital organs such as the heart and liver. The oxidative status of each patient is affected by multiple internal and external factors, including genetic makeup, health conditions, nutrition, physical activity, age, and the environment (e.g., air pollution, radiation). In addition, oxidative stress is influenced by the clinical manifestations of the disease (unpaired globin chains, iron overload, anemia, etc.). Application of personalized (theranostics) medicine principles, including diagnostic tests for selecting targeted therapy, is therefore important for optimal treatment of the oxidative stress of these patients. We summarize the role of oxidative stress and the current and potential antioxidative therapeutics in β-thalassemia and describe some methodologies, mostly cellular, that might be helpful for application of a theranostics approach to therapy.


Compliance with Ethical Standards

Conflicts of interest

EF and MD have no conflicts of interest that are directly relevant to the content of this article.


No sources of funding were used to conduct this study or prepare this manuscript.


  1. 1.
    Fibach E, Rachmilewitz E. The Role of Oxidative Stress in Hemolytic Anemia. Curr Mol Med. 2008;8(7):609–19.Google Scholar
  2. 2.
    Weatherall DJ. The thalassemia syndromes. Tex Rep Biol Med. 1980;40:323–33.Google Scholar
  3. 3.
    Fibach E, Rachmilewitz E. Iron overload in hematological disorders La Presse Medicale. 2017; In PressGoogle Scholar
  4. 4.
    Rund D. Thalassemia 2016: Modern medicine battles an ancient disease. Am J Hematol. 2016;91(1):15–21.Google Scholar
  5. 5.
    Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 3rd ed. Avon: Oxford University Press; 1999.Google Scholar
  6. 6.
    Dunn JD, Alvarez LAJ, Zhang XZ, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–85.Google Scholar
  7. 7.
    Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in beta-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226–39.Google Scholar
  8. 8.
    Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972;247(21):6960–2.Google Scholar
  9. 9.
    Babior BM. Oxidizing radicals and red cell destruction. Prog Clin Biol Res. 1981;51:173–95.Google Scholar
  10. 10.
    Faivre-Fiorina B, Caron A, Labrude P, Vigneron C. Erythrocyte, plasma and substitute hemoglobins facing physiological oxidizing and reducing agents. Ann Biol Clin (Paris). 1998;56(5):545–56.Google Scholar
  11. 11.
    Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000;28(4):625–35.Google Scholar
  12. 12.
    Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014. Scholar
  13. 13.
    Han YH, Kim SU, Kwon TH, Lee DS, Ha HL, Park DS, et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun. 2012;426(3):427–32.Google Scholar
  14. 14.
    Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85(24):9748–52.Google Scholar
  15. 15.
    Rund D, Rachmilewitz E. Medical progress: beta-thalassemia. N Engl J Med. 2005;353(11):1135–46.Google Scholar
  16. 16.
    Rachmilewitz E, Peisach J, Bradley T, Blumberg W. Role of haemichromes in the formation of inclusion bodies in haemoglobin H disease. Nature. 1969;222:248–50.Google Scholar
  17. 17.
    Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.Google Scholar
  18. 18.
    Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365–81.Google Scholar
  19. 19.
    Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23(3):185–92.Google Scholar
  20. 20.
    Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics. 2017;9(10):1367–75.Google Scholar
  21. 21.
    Prus E, Fibach E. Uptake of non-transferrin iron by erythroid cells. Anemia. 2011;2011:945289.Google Scholar
  22. 22.
    Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38:20–6.Google Scholar
  23. 23.
    Prus E, Fibach E. The labile iron pool in human erythroid cells. Br J Haematol. 2008;142(2):301–7.Google Scholar
  24. 24.
    Prus E, Fibach E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A. 2008;73(1):22–7.Google Scholar
  25. 25.
    Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977;50(3):433–9.Google Scholar
  26. 26.
    Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37.Google Scholar
  27. 27.
    Taher AT, Saliba AN. Iron overload in thalassemia: different organs at different rates. Hematol Am Soc Hematol Educ Prog. 2017:265-71.Google Scholar
  28. 28.
    Hellstrom-Lindberg E. Management of anemia associated with myelodysplastic syndrome. Semin Hematol. 2005;42(2):S10–3.Google Scholar
  29. 29.
    Ganz T. Hepcidin and the global burden of iron deficiency. Clin Chem. 2015;61(4):577–8.Google Scholar
  30. 30.
    Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta-Mol Cell Res. 2012;1823(9):1434–43.Google Scholar
  31. 31.
    Gardenghi S, Marongiu M, Ramos P, Guy E, Breda L, Chadburn A, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down regulation of hepcidin and up regulation of ferroportin. Blood. 2006;108(11):443A–4A.Google Scholar
  32. 32.
    Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBP alpha and STAT-3. Biochem Biophys Res Commun. 2007;356(1):312–7.Google Scholar
  33. 33.
    Miura K, Taura K, Kodama Y, Brenner DA. Histone deacetylase inhibition restores hepcidin expression in Hcv replicon cells. Hepatology. 2008;48(4):789A–90A.Google Scholar
  34. 34.
    Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Investig. 2007;117(7):1926–32.Google Scholar
  35. 35.
    Fraenkel P. Anemia of inflammation: a review. Med Clin North Am. 2017;101(2):285–96.Google Scholar
  36. 36.
    Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood. 2009;114(10):2015–9.Google Scholar
  37. 37.
    Dormandy TL. The autoxidation of red cells. Br J Haematol. 1971;20(5):457–61.Google Scholar
  38. 38.
    Winterbourn CC, Carrell RW. Studies of hemoglobin denaturation and Heinz body formation in the unstable hemoglobins. J Clin Invest. 1974;54(3):678–89.Google Scholar
  39. 39.
    Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol. 2003;70(2):84–90.Google Scholar
  40. 40.
    Rice-Evans C, Omorphos SC, Baysal E. Sickle cell membranes and oxidative damage. Biochem J. 1986;237(1):265–9.Google Scholar
  41. 41.
    Das-Chaudhuri AB. Genetic basis of human scalp hair weight: a twin study. Ann Hum Biol. 1980;7(1):77–81.Google Scholar
  42. 42.
    Asakura T, Onishi T, Friedman S, Schwartz E. Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc Natl Acad Sci USA. 1974;71(5):1594–8.Google Scholar
  43. 43.
    Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Semin Hematol. 1989;26(4):257–76.Google Scholar
  44. 44.
    Ideguchi H. Effects of abnormal Hb on red cell membranes. Rinsho Byori. 1999;47(3):232–7.Google Scholar
  45. 45.
    Lauf PK, Adragna NC. K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem. 2000;10(5–6):341–54.Google Scholar
  46. 46.
    Duranton C, Huber SM, Lang F. Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol. 2002;539(Pt 3):847–55.Google Scholar
  47. 47.
    Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nature Medicine. 2014;20(4):398.Google Scholar
  48. 48.
    Schrier SL, Centis F, Verneris M, Ma L, Angelucci E. The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep. 2003;8(5):241–5.Google Scholar
  49. 49.
    Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood. 2002;99(1):36–43.Google Scholar
  50. 50.
    Eldor A. Abnormal platelet functions in beta thalassaemia. Scand J Haematol. 1978;20(5):447–52.Google Scholar
  51. 51.
    Hussain MA, Hutton RA, Pavlidou O, Hoffbrand AV. Platelet function in beta-thalassaemia major. J Clin Pathol. 1979;32(5):429–33.Google Scholar
  52. 52.
    Rinder HM, Snyder EL, Bonan JL, Napychank PA, Malkus H, Smith BR. Activation in stored platelet concentrates: correlation between membrane expression of P-selectin, glycoprotein IIb/IIIa, and beta-thromboglobulin release. Transfusion. 1993;33(1):25–9.Google Scholar
  53. 53.
    Pasin M, Yavuzer S, Tekin M, Akar N, Violi F. Oxygen free radical-dependent increased platelet function in beta-thalassemia major patients. Thromb Res. 1998;92(6):283–6.Google Scholar
  54. 54.
    Eidt JF, Allison P, Noble S, Ashton J, Golino P, McNatt J, et al. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989;84(1):18–27.Google Scholar
  55. 55.
    Hanson SR, Harker LA. Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci USA. 1988;85(9):3184–8.Google Scholar
  56. 56.
    Blockmans D, Deckmyn H, Vermylen J. Platelet activation. Blood Rev. 1995;9(3):143–56.Google Scholar
  57. 57.
    Iuliano L, Colavita AR, Leo R, Pratico D, Violi F. Oxygen free radicals and platelet activation. Free Radic Biol Med. 1997;22(6):999–1006.Google Scholar
  58. 58.
    Amer J, Fibach E. Oxidative status of platelets in normal and thalassemic blood. Thromb Haemost. 2004;92(5):1052–9.Google Scholar
  59. 59.
    Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.Google Scholar
  60. 60.
    Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.Google Scholar
  61. 61.
    Mason R. In vitro and in vivo detection of free radicals metabolites with ESR. In: Punchard N, Kelly F, editors. In: Free Radicals: A Practical Approach. Oxford, England: IRL Press; 1996. p. 11–24.Google Scholar
  62. 62.
    Halliwell B, Kaur H. Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radic Res. 1997;27(3):239–44.Google Scholar
  63. 63.
    Biaglow JE, Manevich Y, Uckun F, Held KD. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic Biol Med. 1997;22(7):1129–38.Google Scholar
  64. 64.
    Kuthan H, Ullrich V, Estabrook RW. A quantitative test for superoxide radicals produced in biological systems. Biochem J. 1982;203(3):551–8.Google Scholar
  65. 65.
    Amano F, Noda T. Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent. FEBS Lett. 1995;368(3):425–8.Google Scholar
  66. 66.
    Cordelli E, Fresegna AM, D’Alessio A, Eleuteri P, Spano M, Pacchierotti F, et al. ReProComet: a new in vitro method to assess DNA damage in mammalian sperm. Toxicol Sci. 2007;99(2):545–52.Google Scholar
  67. 67.
    Levine R, Wehr N, Wikkiams J, Stadtman E, Shacter E. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol. 2000;99:15–24.Google Scholar
  68. 68.
    Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 1999;27(11–12):1173–81.Google Scholar
  69. 69.
    Esterbauer H. Estimation of peroxidative damage. Pathol Biol (Paris). 1996;44(1):25–8.Google Scholar
  70. 70.
    Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovasc Res. 2007;75(1):21–8.Google Scholar
  71. 71.
    Ginsburg I, Sadovnic M, Oron M, Kohen R. Novel chemiluminescence-inducing cocktails, part II: measurement of the anti-oxidant capacity of vitamins, thiols, body fluids, alcoholic beverages and edible oils. Inflammopharmacology. 2004;12(4):305–20.Google Scholar
  72. 72.
    Koren E, Kohen R, Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp Biol Med (Maywood). 2010;235(6):689–99.Google Scholar
  73. 73.
    Ginsburg I, Kohen R, Koren E. Quantifying oxidant-scavenging ability of blood. N Engl J Med. 2011;364(9):883–5.Google Scholar
  74. 74.
    Brown M, Wittwer C. Flow cytometry: Principles and clinical applications in hematology. Clin Chem. 2000;46(8B):1221–9.Google Scholar
  75. 75.
    Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils–a graded response to membrane stimulation. Journal of Immunology. 1983;130(4):1910–7.Google Scholar
  76. 76.
    Rothe G, Oser A, Valet G. Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften. 1988;75(7):354–5.Google Scholar
  77. 77.
    O’Connor JE, Kimler BF, Morgan MC, Tempas KJ. A flow cytometric assay for intracellular nonprotein thiols using mercury orange. Cytometry. 1988;9(6):529–32.Google Scholar
  78. 78.
    Amer J, Goldfarb A, Fibach E. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytometry A. 2004;60(1):73–80.Google Scholar
  79. 79.
    Freikman I, Amer J, Ringel I, Fibach E. A flow cytometry approach for quantitative analysis of cellular phosphatidylserine distribution and shedding. Anal Biochem. 2009;393(1):111–6.Google Scholar
  80. 80.
    Ogawa Y, Kobayashi T, Nishioka A, Kariya S, Hamasato S, Seguchi H, et al. Radiation-induced oxidative DNA damage, 8-oxoguanine, in human peripheral T cells. Int J Mol Med. 2003;11(1):27–32.Google Scholar
  81. 81.
    Fibach E, Rachmilewitz EA. The effect of fermented papaya preparation on radioactive exposure. Radiat Res. 2015;184(3):304–13.Google Scholar
  82. 82.
    Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.Google Scholar
  83. 83.
    Rottenberg H, Wu SL. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta Mol Cell Res. 1998;1404(3):393–404.Google Scholar
  84. 84.
    Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F-0 during ATP synthesis. Biochim Biophys Acta-Bioenerg. 2003;1606(1–3):137–46.Google Scholar
  85. 85.
    Prus E, Fibach E. The effect of iron chelators on the labile iron and oxidative status of thalassemic erythroid cells. Acta Haematol. 2009;123(1):14–20.Google Scholar
  86. 86.
    Prus E, Fibach E. Heterogeneity of F cells in beta-thalassemia. Transfusion. 2013;53(3):499–504.Google Scholar
  87. 87.
    Amoyal I, Fibach E. Hemoglobin switch in the newborn: A flow cytometry analysis. Neonatology. 2007;91(1):61–8.Google Scholar
  88. 88.
    Ghoti H, Fibach E, Dana M, Abu Shaban M, Jeadi H, Braester A, et al. Oxidative stress contributes to hemolysis in patients with hereditary spherocytosis and can be ameliorated by fermented papaya preparation. Ann Hematol. 2010;90(5):509–13.Google Scholar
  89. 89.
    Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.Google Scholar
  90. 90.
    Amoyal I, Fibach E. Flow cytometric analysis of fetal hemoglobin in erythroid precursors of beta-thalassemia. Clin Lab Haematol. 2004;26(3):187–93.Google Scholar
  91. 91.
    Amer J, Goldfarb A, Rachmilewitz EA, Fibach E. Fermented papaya preparation as redox regulator in blood cells of beta-thalassemic mice and patients. Phytother Res. 2008;22(6):820–8.Google Scholar
  92. 92.
    Prus E, Fibach E. The Antioxidant effect of Fermented Papaya Preparation Involves Iron Chelation. In press. Journal of biological regulators and homeostatic agents. 2012.Google Scholar
  93. 93.
    Prus E, Fibach E. Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol. 2010;123(1):14–20.Google Scholar
  94. 94.
    Fibach E, Manor D, Oppenheim A, Rachmilewitz EA. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 1989;73(1):100–3.Google Scholar
  95. 95.
    Fibach E. Cell culture and animal models to screen for promising fetal hemoglobin-stimulating compounds. Semin Hematol. 2001;38(4):374–81.Google Scholar
  96. 96.
    Khemayanto H, Shi BM. Role of Mediterranean diet in prevention and management of type 2 diabetes. Chin Med J. 2014;127(20):3651–6.Google Scholar
  97. 97.
    Hu XT, Wang H, Lv XH, Chu L, Liu ZY, Wei XG, et al. Cardioprotective effects of tannic acid on isoproterenol-induced myocardial injury in rats: further insight into “French Paradox’. Phytother Res. 2015;29(9):1295–303.Google Scholar
  98. 98.
    Fibach E, Tan ES, Jamuar S, Ng I, Amer J, Rachmilewitz EA. Amelioration of oxidative stress in red blood cells from patients with beta-thalassemia major and intermedia and E-beta-thalassemia following administration of a fermented papaya preparation. Phytother Res. 2010;24(9):1334–8.Google Scholar
  99. 99.
    Chan AC, Chow CK, Chiu D. Interaction of antioxidants and their implication in genetic anemia. Proc Soc Exp Biol Med. 1999;222(3):274–82.Google Scholar
  100. 100.
    Hyman CB, Landing B, Alfin-Slater R, Kozak L, Weitzman J, Ortega JA. Dl-alpha-tocopherol, iron, and lipofuscin in thalassemia. Ann N Y Acad Sci. 1974;232:211–20.Google Scholar
  101. 101.
    Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–7.Google Scholar
  102. 102.
    De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M, Passi S. Blood antioxidant status and urinary levels of catecholamine metabolites in beta-thalassemia. Free Radic Res. 1999;30(6):453–62.Google Scholar
  103. 103.
    Horwitt MK, Harvey CC, Duncan GD, Wilson WC. Effects of limited tocopherol intake in man with relationships to erythrocyte hemolysis and lipid oxidations. Am J Clin Nutr. 1956;4(4):408–19.Google Scholar
  104. 104.
    Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr. 1960;8:451–61.Google Scholar
  105. 105.
    Miniero R, Canducci E, Ghigo D, Saracco P, Vullo C. Vitamin E in beta-thalassemia. Acta Vitaminol Enzymol. 1982;4(1–2):21–5.Google Scholar
  106. 106.
    Tesoriere L, D’Arpa D, Butera D, Allegra M, Renda D, Maggio A, et al. Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in beta-thalassemia intermedia patients. Free Radic Res. 2001;34(5):529–40.Google Scholar
  107. 107.
    Giardini O, Cantani A, Donfrancesco A, Martino F, Mannarino O, D’Eufemia P, et al. Biochemical and clinical effects of vitamin E administration in homozygous beta-thalassemia. Acta Vitaminol Enzymol. 1985;7(1–2):55–60.Google Scholar
  108. 108.
    Kahane I, Rachmilewitz EA. Alterations in the red blood cell membrane and the effect of vitamin E on osmotic fragility in beta-thalassemia major. Isr J Med Sci. 1976;12(1):11–5.Google Scholar
  109. 109.
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.Google Scholar
  110. 110.
    Engelhardt JF. Redox-mediated gene therapies for environmental injury: approaches and concepts. Antioxid Redox Signal. 1999;1(1):5–27.Google Scholar
  111. 111.
    Kaltschmidt B, Sparna T, Kaltschmidt C. Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal. 1999;1(2):129–44.Google Scholar
  112. 112.
    Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. Faseb J. 1996;10(7):709–20.Google Scholar
  113. 113.
    Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000;28(9):1387–404.Google Scholar
  114. 114.
    Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697–705.Google Scholar
  115. 115.
    Mitchinson MJ, Stephens NG, Parsons A, Bligh E, Schofield PM, Brown MJ. Mortality in the CHAOS trial. Lancet. 1999;353(9150):381–2.Google Scholar
  116. 116.
    Rapola JM, Virtamo J, Ripatti S, Huttunen JK, Albanes D, Taylor PR, et al. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet. 1997;349(9067):1715–20.Google Scholar
  117. 117.
    Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Investig. 2007;117(8):2133–44.Google Scholar
  118. 118.
    Wang H, Li YM, Wang SF, Zhang Q, Zheng JW, Yang YD, et al. Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochem Biophys Res Commun. 2015;460(4):923–30.Google Scholar
  119. 119.
    Zhang X, Camprecios G, Rimmele P, Liang R, Yalcin S, Mungamuri SK, et al. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol. 2014;89(10):954–63.Google Scholar
  120. 120.
    Pecoraro A, Troia A, Calzolari R, Scazzone C, Rigano P, Martorana A, et al. Efficacy of rapamycin as inducer of hb f in primary erythroid cultures from sickle cell disease and beta-thalassemia patients. Hemoglobin. 2015;39(4):225–9.Google Scholar
  121. 121.
    Franco SS, De Falco L, Ghaffari S, Brugnara C, Sinclair DA, Matte A, et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica. 2014;99(2):267–75.Google Scholar
  122. 122.
    Chen JJ. Translational control by heme-regulated eIF2a kinase during erythropoiesis. Curr Opin Hematol. 2014;21(3):172–8.Google Scholar
  123. 123.
    Suragani R, Zachariah RS, Velazquez JG, Liu SJ, Sun CW, Townes TM, et al. Heme-regulated eIF2 alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84.Google Scholar
  124. 124.
    Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2 alpha kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511.Google Scholar
  125. 125.
    Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2 alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Investig. 2005;115(6):1562–70.Google Scholar
  126. 126.
    Hahn CK, Lowrey CH. Induction of fetal hemoglobin through enhanced translation efficiency of gamma-globin mRNA. Blood. 2014;124(17):2730–4.Google Scholar
  127. 127.
    Matte A, De Falco L, Federti E, Cozzi A, Iolascon A, Levi S, et al. Peroxiredoxin-2: a novel regulator of iron homeostasis in ineffective erythropoiesis. Antioxid Redox Signal. 2018;28(1):1–14.Google Scholar
  128. 128.
    De Franceschi L, Bertoldi M, De Falco L, Franco SS, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in beta-thalassemic erythropoiesis. Haematol Hematol J. 2011;96(11):1595–604.Google Scholar
  129. 129.
    Pittala V, Salerno L, Romeo G, Modica MN, Siracusa MA. A Focus on Heme Oxygenase-1 (HO-1) Inhibitors. Curr Med Chem. 2013;20(30):3711–32.Google Scholar
  130. 130.
    Garcia-Santos D, Mikhael M, Horvathova M, Ponka P. Uncovering the role of heme oxygenase 1 in the pathophysiology of beta-thalassemia. In: 56th annual meeting of the American-Society-of-Hematology, Dec 2014; San Francisco; Blood. 124(21).Google Scholar
  131. 131.
    Garcia-Santos D, Hamdi A, Saxova Z, Fillebeen C, Pantopoulos K, Horvathova M, et al. Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a beta-thalassemia mouse model. Blood. 2018;131(2):236–46.Google Scholar
  132. 132.
    Aizawa S, Harada T, Kanbe E, Tsuboi I, Aisaki K, Fujii H. Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity. Exp Hematol. 2005;33(11):1292–8.Google Scholar
  133. 133.
    Matte A, Beneduce E, Siciliano A, Kosinski P, Janin A, Lebouef C, et al. The Pyruvate Kinase Activator Ag-348 Improves Murine B-Thalassemic Anemia and Corrects Ineffective Erythropoiesis. Haematologica. 2016;101:18-.Google Scholar
  134. 134.
    Makis A, Hatzimichael E, Papassotiriou I, Voskaridou E. Clinical trials update in new treatments of beta-thalassemia. Am J Hematol. 2017;91(11):1135–45.Google Scholar
  135. 135.
    Quek L, Thein SL. Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136(3):353–65.Google Scholar
  136. 136.
    Mettananda S, Gibbons RJ, Higgs DR. Understanding alpha-globin gene regulation and implications for the treatment of beta-thalassemia. Cooley’s Anemia. Annal New York Acad Sci, 2016. p. 16-24.Google Scholar
  137. 137.
    Mettananda S, Fisher CA, Sloane-Stanley JA, Taylor S, Oppermann U, Gibbons RJ, et al. Selective silencing of alpha-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of beta-thalassemia. Haematologica. 2017;102(3):E80–4.Google Scholar
  138. 138.
    Gambari R, Fibach E. Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem. 2007;14(2):199–212.Google Scholar
  139. 139.
    Fibach E, Rachmilewitz E. Pathophysiology and treatment of patients with beta-thalassemia—An update. F1000 Faculty Review. 2018, in press.Google Scholar
  140. 140.
    Smith EC, Orkin SH. Hemoglobin genetics: recent contributions of GWAS and gene editing. Hum Mol Genet. 2016;25(R2):R99–105.Google Scholar
  141. 141.
    Wilber A, Hargrove PW, Kim YS, Riberdy JM, Sankaran VG, Papanikolaou E, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34(+) cells after lentiviral vector-mediated gene transfer. Blood. 2011;117(10):2817–26.Google Scholar
  142. 142.
    Costa FC, Fedosyuk H, Chazelle AM, Neades RY, Peterson KR. Mi2 beta is required for gamma-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in beta-YAC transgenic mice. Plos Genetics. 2012;8(12).
  143. 143.
    Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U et al. MicroRNA-486-3p regulates gamma-globin expression in human erythroid cells by directly modulating BCL11A. Plos One. 2013;8(4).
  144. 144.
    Guda S, Brendel C, Renella R, Du P, Bauer DE, Canver MC, et al. miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Mol Ther. 2015;23(9):1465–74.Google Scholar
  145. 145.
    Breda L, Motta I, Lourenco S, Gemmo C, Deng WL, Rupon JW, et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016;128(8):1139–43.Google Scholar
  146. 146.
    Deng WL, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158(4):849–60.Google Scholar
  147. 147.
    Fibach E, Prus E, Bianchi N, Zuccato C, Breveglieri G, Salvatori F, et al. Resveratrol: antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and beta-thalassemia patientsV. Int J Mol Med. 2012;29(6):974–82.Google Scholar
  148. 148.
    Hsiao CH, Li W, Lou TF, Baliga BS, Pace BS. Fetal hemoglobin induction by histone deacetylase inhibitors involves generation of reactive oxygen species. Exp Hematol. 2006;34(3):264–73.Google Scholar
  149. 149.
    Rombout-Sestrienkova E, van Kraaij MGJ, Koek GH. How we manage patients with hereditary haemochromatosis. Br J Haematol. 2016;175(5):759–70.Google Scholar
  150. 150.
    Leitcha H, Fibach E, Rachmilewitz E. Toxicity of iron overload and iron overload reduction in the setting ofhematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol. 2017;113:156–70.Google Scholar
  151. 151.
    Taher A, Origa R, Perrotta S, Kourakli A, Ruffo G, Kattamis A et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II ECLIPSE study. Am J Hematol. 2017;Epub ahead of print.Google Scholar
  152. 152.
    Chuansumrit A, Songdej D, Sirachainan N, Wongwerawattanakoon P, Kadegasem P, Sasanakul W. Safety profile of a liquid formulation of deferiprone in young children with transfusion-induced iron overload: a 1-year experience. Paediatr Int Child Health. 2016;36(3):209–13.Google Scholar
  153. 153.
    Koumoutsea EV, Garbowski M, Porter J. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization. Br J Haematol. 2015;170(6):874–83.Google Scholar
  154. 154.
    Preza GC, Ruchala P, Pinon R, Ramos E, Qiao B, Peralta MA, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Investig. 2011;121(12):4880–8.Google Scholar
  155. 155.
    Nai A, Pagani A, Mandelli G, Lidonnici MR, Silvestri L, Ferrari G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119(21):5021–9.Google Scholar
  156. 156.
    Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer WV, Hall CB, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2):177–82.Google Scholar
  157. 157.
    Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia. Blood. 2015;126(17):2031–7.Google Scholar
  158. 158.
    Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875–85.Google Scholar
  159. 159.
    Savona MR. Are we altering the natural history of primary myelofibrosis? Leuk Res. 2014;38(9):1004–12.Google Scholar
  160. 160.
    Casu C, Oikonomidou PR, Lo Presti V, Aghajan M, Guo SL, Osheiza A et al. Pote ntial therapeutic applications of jak2 inhibitors and hif2a-aso for the treatment of beta-thalassemia intermedia and major. Am J Hematol. 2017;92(8):E221-E.Google Scholar
  161. 161.
    Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N Engl J Med. 2018;378(16):1479–93.Google Scholar
  162. 162.
    Walters RW, Parker R. Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci. 2015;40(10):552–9.Google Scholar
  163. 163.
    Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102–5.Google Scholar
  164. 164.
    Arlet JB, Ribeil JA, Guil lem F, Negre O, Hazoume A, Marcion G et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. Nature. 2014;514(7521):242- + .Google Scholar
  165. 165.
    Guillem F, Dussiot M, Causse S, Marcion G, Gautier EF, Rossignol J et al. XPO1 (Exportin-1) is a major regulator of human erythroid differentiation. Potential clinical applications to decrease ineffective erythropoiesis of beta-thalassemia. Blood. 2015;126(23). In: 57th Annual Meeting of the American-Society-of-Hematology, Dec 2015, Orlando, FL.Google Scholar
  166. 166.
    Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107(2):435–43.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of HematologyHadassah-Hebrew University Medical CenterJerusalemIsrael

Personalised recommendations