Skip to main content
Log in

Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Extrachromosomal circular DNAs (eccDNAs) are circular DNAs that are originated from chromosomes, but are independent from chromosomal DNA. The eccDNAs are commonly found in various tissues and cell types, and in both normal and diseased conditions. Due to their highly heterogeneous origins and being widely spread in nearly all eukaryotes, the eccDNAs are believed to reflect the genome’s plasticity and instability. With the assistance of next-generation sequencing, more eccDNAs have been characterized at the molecular level. Recently, eccDNAs have been reported as cell-free DNAs in the circulation system. Importantly, these circulating eccDNAs have shown some evidence with disease associations, suggesting their potential utility as a new type of biomarker for disease detection, treatment assessment and progress surveillance. However, many challenges need to be addressed before implementing the eccDNAs as a new source of genetic material for liquid biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 2017;13(2):e1006630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Koo DH, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc Natl Acad Sci USA. 2018;115(13):3332–7.

    Article  PubMed  CAS  Google Scholar 

  3. Moller HD, Parsons L, Jorgensen TS, Botstein D, Regenberg B. Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA. 2015;112(24):E3114–22.

    Article  PubMed  CAS  Google Scholar 

  4. Moller HD, Larsen CE, Parsons L, Hansen AJ, Regenberg B, Mourier T. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 (Bethesda). 2015;6(2):453–62.

    Article  CAS  Google Scholar 

  5. Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336(6077):82–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Moller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9(1):1069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet. 2018;34(4):270–8.

    Article  PubMed  CAS  Google Scholar 

  8. Alsford NS, Navarro M, Jamnadass HR, Dunbar H, Ackroyd M, Murphy NB, et al. The identification of circular extrachromosomal DNA in the nuclear genome of Trypanosoma brucei. Mol Microbiol. 2003;47(2):277–89.

    Article  PubMed  CAS  Google Scholar 

  9. Shore D, Langowski J, Baldwin RL. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA. 1981;78(8):4833–7.

    Article  PubMed  CAS  Google Scholar 

  10. Von Hoff DD, Needham-VanDevanter DR, Yucel J, Windle BE, Wahl GM. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA. 1988;85(13):4804–8.

    Article  Google Scholar 

  11. Ruiz JC, Choi KH, von Hoff DD, Roninson IB, Wahl GM. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol Cell Biol. 1989;9(1):109–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–55.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu J, Yu Y, Meng X, Fan Y, Zhang Y, Zhou C, et al. De novo-generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int J Cancer. 2013;133(4):797–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14(8):977–85.

    Article  PubMed  CAS  Google Scholar 

  15. Kunisada T, Yamagishi H. Sequence organization of repetitive sequences enriched in small polydisperse circular DNAs from HeLa cells. J Mol Biol. 1987;198(4):557–65.

    Article  PubMed  CAS  Google Scholar 

  16. Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, et al. Production of extrachromosomal MicroDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep. 2015;11(11):1749–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Motejlek K, Schindler D, Assum G, Krone W. Increased amount and contour length distribution of small polydisperse circular DNA (spcDNA) in Fanconi anemia. Mutat Res. 1993;293(3):205–14.

    Article  PubMed  CAS  Google Scholar 

  18. Regev A, Cohen S, Cohen E, Bar-Am I, Lavi S. Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene. 1998;17(26):3455–61.

    Article  PubMed  CAS  Google Scholar 

  19. Windle B, Draper BW, Yin YX, O’Gorman S, Wahl GM. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991;5(2):160–74.

    Article  PubMed  CAS  Google Scholar 

  20. Neidlinger C, Assum G, Krone W, Dietrich C, Hochsattel R, Klotz G. Increased amounts of small polydisperse circular DNA (spcDNA) in angiofibroma-derived cell cultures from patients with tuberous sclerosis (TS). Hum Genet. 1988;79(3):286–8.

    Article  PubMed  CAS  Google Scholar 

  21. Motejlek K, Assum G, Krone W, Kleinschmidt AK. The size of small polydisperse circular DNA (spcDNA) in angiofibroma-derived cell cultures from patients with tuberous sclerosis (TSC) differs from that in fibroblasts. Hum Genet. 1991;87(1):6–10.

    Article  PubMed  CAS  Google Scholar 

  22. Mehanna P, Gagne V, Lajoie M, Spinella JF, St-Onge P, Sinnett D, et al. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PLoS One. 2017;12(9):e0184365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shoura MJ, Gabdank I, Hansen L, Merker J, Gotlib J, Levene SD, et al. Intricate and cell type-specific populations of endogenous circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 (Bethesda). 2017;7(10):3295–303.

    Article  Google Scholar 

  24. Gaubatz JW. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237(5–6):271–92.

    Article  PubMed  CAS  Google Scholar 

  25. Jorgensen TS, Xu Z, Hansen MA, Sorensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One. 2014;9(2):e87924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhu J, Zhang F, Du M, Zhang P, Fu S, Wang L. Molecular characterization of cell-free eccDNAs in human plasma. Sci Rep. 2017;7(1):10968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kinoshita Y, Ohnishi N, Yamada Y, Kunisada T, Yamagishi H. Extrachromosomal circular DNA from nuclear fraction of higher plants. Plant Cell Physiol. 1985;26(7):1401–9.

    CAS  Google Scholar 

  28. Diaz-Lara A, Gent DH, Martin RR. Identification of extrachromosomal circular DNA in hop via rolling circle amplification. Cytogenet Genome Res. 2016;148(2–3):237–40.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003;13(6A):1133–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008;53(6):1027–34.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16(5):2002–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cohen S, Mechali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucl acids Res. 2001;29(12):2542–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen S, Menut S, Mechali M. Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol. 1999;19(10):6682–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reon BJ, Dutta A. Biological processes discovered by high-throughput sequencing. Am J Pathol. 2016;186(4):722–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yamagishi H, Tsuda T, Fujimoto S, Toda M, Kato K, Maekawa Y, et al. Purification of small polydisperse circular DNA of eukaryotic cells by use of ATP-dependent deoxyribonuclease. Gene. 1983;26(2–3):317–21.

    PubMed  CAS  Google Scholar 

  36. Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res. 2017;15(9):1197–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Moller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J Vis Exp. 2016;110:1–8.

    Google Scholar 

  38. Ji W, Bian Z, Yu Y, Yuan C, Liu Y, Yu L, et al. Expulsion of micronuclei containing amplified genes contributes to a decrease in double minute chromosomes from malignant tumor cells. Int J Cancer. 2014;134(6):1279–88.

    Article  PubMed  CAS  Google Scholar 

  39. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017;543(7643):122–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mourier T. Transposable elements and circular DNAs. Mobile Genet Elem. 2016;6(6):e1240748.

    Article  CAS  Google Scholar 

  41. Sinclair DA, Guarente L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell. 1997;91(7):1033–42.

    Article  PubMed  CAS  Google Scholar 

  42. Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet. 2015;52(2):135–44.

    Article  PubMed  CAS  Google Scholar 

  43. de Carvalho AC, Kim H, Poisson LM, Winn ME, Mueller C, Cherba D, et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet. 2018;50(5):708–17.

    Article  CAS  Google Scholar 

  44. Stergianou K, Fox C, Russell NH. Fusion of NUP214 to ABL1 on amplified episomes in T-ALL—implications for treatment. Leukemia. 2005;19(9):1680–1.

    Article  PubMed  CAS  Google Scholar 

  45. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9.

    Article  PubMed  CAS  Google Scholar 

  46. Rowley JD, Le Beau MM, Rabbitts TH. Chromosomal translocations and genome rearrangements in cancer. Berlin: Springer; 2015.

    Book  Google Scholar 

  47. Schmidt H, Taubert H, Lange H, Kriese K, Schmitt WD, Hoffmann S, et al. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes. Oncol Rep. 2009;22(2):393–400.

    PubMed  CAS  Google Scholar 

  48. Autiero M, Camarca A, Ciullo M, Debily MA, El Marhomy S, Pasquinelli R, et al. Intragenic amplification and formation of extrachromosomal small circular DNA molecules from the PIP gene on chromosome 7 in primary breast carcinomas. Int J Cancer. 2002;99(3):370–7.

    Article  PubMed  CAS  Google Scholar 

  49. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.

    Article  PubMed  CAS  Google Scholar 

  50. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.

    Article  PubMed  CAS  Google Scholar 

  51. Ashoor G, Syngelaki A, Wagner M, Birdir C, Nicolaides KH. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012;206(4):322e1–5.

    Article  CAS  Google Scholar 

  52. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 2013;5(8):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mouliere F, Piskorz AM, Chandrananda D, Moore E, Morris J, Smith CG, Goranova T, Heider K, Mair R, Supernat A, Gounaris I, Ros S, Wan JCM, Jimenez-Linan M, Gale D, Brindle K, Massie CE, Parkinson CA, Brenton JD, Rosenfeld N. Selecting short DNA fragments in plasma improves detection of circulating tumour DNA. bioRxiv. 2017. https://doi.org/10.1101/134437.

    Article  Google Scholar 

  54. Wen F, Shen A, Choi A, Gerner EW, Shi J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013;73(14):4256–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Alekseeva LA, Mironova NL, Brenner EV, Kurilshikov AM, Patutina OA, Zenkova MA. Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment. PLoS One. 2017;12(2):e0171988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gaubatz JW, Flores SC. Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs. Mutat Res. 1990;237(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  58. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;4:38.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Allen SE, Hug I, Pabian S, Rzeszutek I, Hoehener C, Nowacki M. Circular concatemers of ultra-short DNA segments produce regulatory RNAs. Cell. 2017;168(6):990–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhu or Liang Wang.

Ethics declarations

Conflict of interest

The authors, JZ, SC, FZ and LW, disclose no potential conflicts of interest.

Funding

This study was partially supported by a National Institute of Health (R01CA212097) Grant to LW and National Natural Science Foundation of China (NSFC) (project# 81301752) and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (project# UNPYSCT-2017056) Grants to JZ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Chen, S., Zhang, F. et al. Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy?. Mol Diagn Ther 22, 515–522 (2018). https://doi.org/10.1007/s40291-018-0348-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0348-6

Navigation