Skip to main content
Log in

Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The acute responses to cluster set resistance training (RT) have been demonstrated. However, as compared to traditional sets, the effect of cluster sets on muscular and neuromuscular adaptations remains unclear.

Objective

To compare the effects of RT programs implementing cluster and traditional set configurations on muscular and neuromuscular adaptations.

Methods

Systematic searches of Embase, Scopus, Medline and SPORTDiscus were conducted. Inclusion criteria were: (1) randomized or non-randomized comparative studies; (2) publication in English; (3) participants of all age groups; (4) participants free of any medical condition or injury; (5) cluster set intervention; (6) comparison intervention utilizing a traditional set configuration; (7) intervention length ≥ three weeks and (8) at least one measure of changes in strength/force/torque, power, velocity, hypertrophy or muscular endurance. Raw data (mean ± SD or range) were extracted from included studies. Hedges’ g effect sizes (ES) ± standard error of the mean (SEM) and 95% confidence intervals (95% CI) were calculated.

Results

Twenty-nine studies were included in the meta-analysis. No differences between cluster and traditional set configurations were found for strength (ES = − 0.05 ± 0.10, 95% CI − 0.21 to 0.11, p = 0.56), power output (ES = 0.02 ± 0.10, 95% CI − 0.17 to 0.20, p = 0.86), velocity (ES = 0.15 ± 0.13, 95% CI − 0.10 to 0.41, p = 0.24), hypertrophy (ES = − 0.05 ± 0.14, 95% CI − 0.32 to 0.23, p = 0.73) or endurance (ES = − 0.07 ± 0.18, 95% CI − 0.43 to 0.29, p = 0.70) adaptations. Moreover, no differences were observed when training volume, cluster set model, training status, body parts trained or exercise type were considered.

Conclusion

Collectively, both cluster and traditional set configurations demonstrate equal effectiveness to positively induce muscular and neuromuscular adaptation(s). However, cluster set configurations may achieve such adaptations with less fatigue development during RT which may be an important consideration across various exercise settings and stages of periodized RT programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The datasets analysed for the current study are available from the corresponding author upon reasonable request.

References

  1. Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, et al. Progression models in resistance training for healthy adults. Med Sci Sport Exerc. 2009;41(3):687–708.

    Google Scholar 

  2. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.

    PubMed  Google Scholar 

  3. Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–34.

    PubMed  Google Scholar 

  4. Schoenfeld B, Grgic J. Evidence-based guidelines for resistance training volume to maximize muscle hypertrophy. Strength Cond J. 2017;40:1.

    Google Scholar 

  5. Granacher U, Lesinski M, Büsch D, Muehlbauer T, Prieske O, Puta C, et al. Effects of resistance training in youth athletes on muscular fitness and athletic performance: a conceptual model for long-term athlete development. Front Physiol. 2016;7:164.

    PubMed  PubMed Central  Google Scholar 

  6. Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2017;31(3):848–67.

    PubMed  Google Scholar 

  7. Haff GG, Burgess S, Stone M. Cluster training: theoretical and practical applications for the strength and conditioning professional. Prof Strength Cond. 2008;12:12–7.

    Google Scholar 

  8. Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sport Exerc. 2005;37:955–63.

    CAS  Google Scholar 

  9. Lawton T, Cronin J, Drinkwater E, Lindsell R, Pyne D. The effect of continuous repetition training and intra-set rest training on bench press strength and power. J Sport Med Phys Fit. 2004;44(4):361–7.

    CAS  Google Scholar 

  10. Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol. 2017;117(11):2125–35.

    CAS  PubMed  Google Scholar 

  11. Roll F, Omer J. FOOTBALL: Tulane football winter program. Strength Cond J. 1987;9(6):34–8.

    Google Scholar 

  12. Miller C, Alderwick K. Cluster training. In: The sport of Olympic-style Weightlifting: training for the connoisseur. 1st ed. Sante Fe: Sunstone Press; 2011. p. 89–92.

    Google Scholar 

  13. Haff GG, Whitley A, McCoy LB, O’Bryant HS, Kilgore JL, Haff EE, et al. Effects of different set configurations on barbell velocity and displacement during a clean pull. J Strength Cond Res. 2003;17(1):95–103.

    PubMed  Google Scholar 

  14. Latella C, Teo W-P, Drinkwater EJ, Kendall K, Haff GG. The acute neuromuscular responses to cluster set resistance training: a systematic review and meta-analysis. Sports Med. 2019;49(3):1861–77.

    PubMed  PubMed Central  Google Scholar 

  15. Mayo X, Iglesias-Soler E, Fernández-Del-Olmo M. Effects of set configuration of resistance exercise on perceived exertion. Percept Mot Skills. 2014;119(3):825–37.

    PubMed  Google Scholar 

  16. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Banyard HG, Williamson BD, et al. Cluster sets: permitting greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perform. 2017;12(4):463–9.

    PubMed  Google Scholar 

  17. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perform. 2016;11(7):885–92.

    PubMed  Google Scholar 

  18. González-Hernández JM, García-Ramos A, Castaño-Zambudio A, Capelo-Ramírez F, Marquez G, Boullosa D, et al. Mechanical, metabolic, and perceptual acute responses to different set configurations in full squat. J Strength Cond Res. 2020;34(6):1581–90.

    PubMed  Google Scholar 

  19. Joy J, Oliver J, McCleary S, Lowery R, Wilson JR. Power output and electromyography activity of the back squat exercise with cluster sets. J Sports Sci. 2013;1:37–45.

    Google Scholar 

  20. Hansen KT, Cronin JB, Pickering SL, Newton MJ. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? J Strength Cond Res. 2011;25(8):2118–26.

    PubMed  Google Scholar 

  21. Rooney KJ, Herbert RD, Balnave RJ. Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc. 1994;26(9):1160–4.

    CAS  PubMed  Google Scholar 

  22. Zarezadeh-Mehrizi A, Aminai M, Amiri-khorasani M. Effects of traditional and cluster resistance training on explosive power in soccer players. Iran J Health Phys Act. 2013;4(1):51–6.

    Google Scholar 

  23. Dias RKN, Penna EM, Noronha ASN, de Azevedo ABC, Barbalho M, Gentil PV, et al. Cluster-sets resistance training induce similar functional and strength improvements than the traditional method in postmenopausal and elderly women. Exp Gerontol. 2020;138:111011.

    PubMed  Google Scholar 

  24. Oliver JM, Jagim AR, Sanchez AC, Mardock MA, Kelly KA, Meredith HJ, et al. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J Strength Cond Res. 2013;27(11):3116–31.

    PubMed  Google Scholar 

  25. Samson A, Pillai PS. Effect of cluster training versus traditional training on muscular strength among recreationally active males: a comparative study. Indian J Physiother Occup Ther. 2018;12(1):122–7.

    Google Scholar 

  26. Davies TB, Halaki M, Orr R, Helms ER, Hackett DA. Changes in bench press velocity and power after 8 weeks of high-load cluster-or traditional-set structures. J Strength Cond Res. 2020;34(10):2734–42.

    PubMed  Google Scholar 

  27. Karsten B, Fu YL, Larumbe-Zabala E, Seijo M, Naclerio F. Impact of two high-volume set configuration workouts on resistance training outcomes in recreationally trained men. J Strength Cond Res. 2019. (Epub ahead of print).

  28. Nicholson G, Ispoglou T, Bissas A. The impact of repetition mechanics on the adaptations resulting from strength-, hypertrophy-and cluster-type resistance training. Eur J Appl Physiol. 2016;116(10):1875–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hardee JP, Lawrence MM, Zwetsloot KA, Triplett NT, Utter AC, McBride JM. Effect of cluster set configurations on power clean technique. J Sports Sci. 2013;31(5):488–96.

    PubMed  Google Scholar 

  30. Asadi A, Ramírez-Campillo R. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance. Medicina. 2016;52(1):41–5.

    PubMed  Google Scholar 

  31. Izquierdo M, Ibanez J, González-Badillo JJ, Hakkinen K, Ratamess NA, Kraemer WJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006;100(5):1647–56.

    CAS  PubMed  Google Scholar 

  32. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    PubMed  PubMed Central  Google Scholar 

  33. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at http://www.covidence.org.

  34. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13(1):9–18.

    PubMed  Google Scholar 

  35. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    PubMed  Google Scholar 

  36. Jackson D, Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods. 2017;8(3):290–302.

    PubMed  PubMed Central  Google Scholar 

  37. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wood JA. Methodology for dealing with duplicate study effects in a meta-analysis. Organ Res Methods. 2007;11(1):79–95.

    Google Scholar 

  39. Haff GG. Quantifying workloads in resistance training: a brief review. Strength Cond J. 2010;10:31–40.

    Google Scholar 

  40. Iglesias-Soler E, Mayo X, Río-Rodríguez D, Carballeira E, Fariñas J, Fernández-Del-Olmo M. Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. J Sports Sci. 2016;34(15):1473–84.

    PubMed  Google Scholar 

  41. Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Feriche B. Influence of a cluster set configuration on the adaptations to short-term power training. J Strength Cond Res. 2018;32(4):930–7.

    PubMed  Google Scholar 

  42. Yazdani S, Aminaei M, Amirseifadini M. Effects of plyometric and cluster resistance training on explosive power and maximum strength in karate players. Int J Appl Exerc Physiol. 2017;6:34–44.

    Google Scholar 

  43. Byrd R, Centry R, Boatwright D. Effect of inter-repetition rest intervals in circuit weight training on PWC170 during arm-kranking exercise. J Sport Med Phys Fit. 1988;28(4):336–40.

    CAS  Google Scholar 

  44. Cuevas-Aburto J, Jukic I, Chirosa-Ríos LJ, González-Hernández JM, Janicijevic D, Barboza-González P, et al. Effect of traditional, cluster, and rest redistribution set configurations on neuromuscular and perceptual responses during strength-oriented resistance training. J Strength Cond Res. 2020. (Epub ahead of print).

  45. Korak JA, Paquette MR, Brooks J, Fuller DK, Coons JM. Effect of rest–pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols. Eur J Appl Physiol. 2017;117(9):1891–6.

    PubMed  Google Scholar 

  46. Arazi H, Khanmohammadi A, Asadi A, Haff GG. The effect of resistance training set configuration on strength, power, and hormonal adaptation in female volleyball players. Appl Physiol Nutr Metab. 2018;43(2):154–64.

    CAS  PubMed  Google Scholar 

  47. Carneiro MAS, de Oliveira Júnior GN, de Sousa JFR, Santagnello SB, Souza MVC, Orsatti FL. Effects of cluster training sets on muscle power and force–velocity relationship in postmenopausal women. Sport Sci for Health. 2019;16:257–65.

    Google Scholar 

  48. Davies TB, Halaki M, Orr R, Mitchell L, Helms ER, Clarke J, et al. Effect of set-structure on upper-body muscular hypertrophy and performance in recreationally-trained males and females. J Strength Cond Res. 2020. (Epub ahead of print).

  49. Fariñas J, Mayo X, Giraldez-García MA, Carballeira E, Fernandez-Del-Olmo M, Rial-Vazquez J, et al. Set configuration in strength training programs modulates the cross education phenomenon. J Strength Cond Res. 2019. (Epud ahead of print).

  50. Folland JP, Irish C, Roberts J, Tarr J, Jones DA. Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med. 2002;36(5):370–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Giessing J, Fisher J, Steele J, Rothe F, Raubold K, Eichmann B. The effects of low volume resistance training with and without advanced techniques in trained participants. J Sport Med Phys Fit. 2016;56(3):249–58.

    Google Scholar 

  52. Iglesias-Soler E, Fernández-del-Olmo M, Mayo X, Fariñas J, Río-Rodríguez D, Carballeira E, et al. Changes in the force-velocity mechanical profile after short resistance training programs differing in set configurations. J Appl Biomech. 2017;33(2):144–52.

    PubMed  Google Scholar 

  53. Prestes J, Tibana RA, de Araujo SE, da Cunha ND, de Oliveira RP, Camarço NF, et al. Strength and muscular adaptations after 6 weeks of rest–pause vs. traditional multiple-sets resistance training in trained subjects. J Strength Cond Res. 2019;33:S113–21.

    PubMed  Google Scholar 

  54. Rial-Vázquez J, Mayo X, Tufano JJ, Fariñas J, Rúa-Alonso M, Iglesias-Soler E. Cluster vs. traditional training programmes: changes in the force–velocity relationship. Sport Biomech. 2020. https://doi.org/10.1080/14763141.2020.1718197

    Article  Google Scholar 

  55. Stragier S, Baudry S, Carpentier A, Duchateau J. Efficacy of a new strength training design: the 3/7 method. Eur J Appl Physiol. 2019;119(5):1093–104.

    PubMed  Google Scholar 

  56. Oliver JM, Kreutzer A, Jenke S, Phillips MD, Mitchell JB, Jones MT. Acute response to cluster sets in trained and untrained men. Eur J Appl Physiol. 2015;115(11):2383–93.

    PubMed  Google Scholar 

  57. Vieira J, Dias MR, Lacio M, Schimitz G, Nascimento G, Panza P, et al. Resistance training with repetition to failure or not on muscle strength and perceptual responses. J Exerc Physiol Online. 2019;22:165–75.

    Google Scholar 

  58. Gabbett TJ. The training—injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–80.

    PubMed  Google Scholar 

  59. Jukic I, Tufano JJ. Shorter but more frequent rest periods: no effect on velocity and power compared to traditional sets not performed to failure. J Hum Kinet. 2019;66(1):257–68.

    PubMed  PubMed Central  Google Scholar 

  60. Vasconcelos GC, Costa BDDV, Damorim IR, Santos TM, Cyrino ES, Junior DDL, et al. Do traditional and cluster-set resistance training systems alter the pleasure and effort perception in trained men? J Phys Educ Sport. 2019;19:823–8.

    Google Scholar 

  61. Tufano JJ, Conlon JA, Nimphius S, Oliver JM, Kreutzer A, Haff GG. Different cluster sets result in similar metabolic, endocrine, and perceptual responses in trained men. J Strength Cond Res. 2019;33(2):346–54.

    PubMed  Google Scholar 

  62. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(1):17–38.

    PubMed  Google Scholar 

  63. Alcazar J, Guadalupe-Grau A, García-García FJ, Ara I, Alegre LM. Skeletal muscle power measurement in older people: a systematic review of testing protocols and adverse events. J Gerontol A Biol Sci Med Sci. 2018;73(7):914–24.

    PubMed  Google Scholar 

  64. Morrissey MC, Harman EA, Johnson MJ. Resistance training modes: specificity and effectiveness. Med Sci Sports Exerc. 1995;27(5):648–60.

    CAS  PubMed  Google Scholar 

  65. Pereira MI, Gomes PS. Movement velocity in resistance training. Sports Med. 2003;33(6):427–38.

    PubMed  Google Scholar 

  66. Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation. Sports Med. 2006;36(3):215–38.

    PubMed  Google Scholar 

  67. Hardee JP, Lawrence MM, Utter AC, Triplett NT, Zwetsloot KA, McBride JM. Effect of inter-repetition rest on ratings of perceived exertion during multiple sets of the power clean. Eur J Appl Physiol. 2012;112(8):3141–7.

    PubMed  Google Scholar 

  68. Taber C, Bellon C, Abbott H, Bingham GE. Roles of maximal strength and rate of force development in maximizing muscular power. J Strength Cond Res. 2016;38(1):71–8.

    Google Scholar 

  69. McBride JM, Kirby TJ, Haines TL, Skinner J. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. Int J Sports Physiol Perform. 2010;5(4):484–96.

    PubMed  Google Scholar 

  70. Morin JB, Jiménez-Reyes P, Brughelli M, Samozino P. When jump height is not a good indicator of lower limb maximal power output: theoretical demonstration, experimental evidence and practical solutions. Sports Med. 2019;49(7):999–1006.

    PubMed  Google Scholar 

  71. Jenkins ND, Housh TJ, Buckner SL, Bergstrom HC, Cochrane KC, Hill EC, et al. Neuromuscular adaptations after 2 and 4 weeks of 80% versus 30% 1 repetition maximum resistance training to failure. J Strength Cond Res. 2016;30(8):2174–85.

    PubMed  Google Scholar 

  72. Schoenfeld BJ, Contreras B, Krieger J, Grgic J, Delcastillo K, Belliard R, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med Sci Sports Exerc. 2019;51(1):94.

    PubMed  Google Scholar 

  73. Schoenfeld BJ, Peterson MD, Ogborn D, Contreras B, Sonmez GT. Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res. 2015;29(10):2954–63.

    PubMed  Google Scholar 

  74. Naclerio FJ, Colado JC, Rhea MR, Bunker D, Triplett NT. The influence of strength and power on muscle endurance test performance. J Strength Cond Res. 2009;23(5):1482–8.

    PubMed  Google Scholar 

  75. Assuncao AR, Bottaro M, Ferreira-Junior JB, Izquierdo M, Cadore EL, Gentil P. The chronic effects of low-and high-intensity resistance training on muscular fitness in adolescents. PLoS ONE. 2016;11(8):e0160650.

    PubMed  PubMed Central  Google Scholar 

  76. Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Sonmez G, Alvar BA. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 2014;28(10):2909–18.

    PubMed  Google Scholar 

  77. Zanchi NE, Lancha AH. Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol. 2008;102(3):253–63.

    CAS  PubMed  Google Scholar 

  78. McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology. 2018;19(6):519–36.

    PubMed  PubMed Central  Google Scholar 

  79. Rier HN, Jager A, Sleijfer S, Maier AB, Levin M-D. The prevalence and prognostic value of low muscle mass in cancer patients: a review of the literature. Oncologist. 2016;21(11):1396.

    PubMed  PubMed Central  Google Scholar 

  80. Suchomel TJ, Comfort P. Technical demands of strength training. In: Turner A, Comfort P, editors. Advanced strength and conditioning: an evidence-based approach. New York: Routledge; 2018. p. 249–73.

    Google Scholar 

  81. Gong H, Jiang Q, Shen D, Gao J. Neuromuscular electrical stimulation improves exercise capacity in adult patients with chronic lung disease: a meta-analysis of English studies. J Thorac Dis. 2018;10(12):6722–32.

    PubMed  PubMed Central  Google Scholar 

  82. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009;10(6):598–605.

    PubMed  Google Scholar 

  83. Iglesias-Soler E, Boullosa DA, Carballeira E, Sánchez-Otero T, Mayo X, Castro-Gacio X, et al. Effect of set configuration on hemodynamics and cardiac autonomic modulation after high-intensity squat exercise. Clin Physiol Funct Imaging. 2015;35(4):250–7.

    PubMed  Google Scholar 

  84. Ribeiro-Torres O, de Sousa AFM, Iglesias-Soler E, Fontes-Villalba M, Zouhal H, Carré F, et al. Lower cardiovascular stress during resistance training performed with inter-repetition rests in elderly coronary patients. Medicina. 2020;56(6):264.

    PubMed Central  Google Scholar 

  85. McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367–83.

    PubMed  Google Scholar 

  86. Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):2187–200.

    PubMed  Google Scholar 

  87. Branscheidt M, Kassavetis P, Anaya M, Rogers D, Huang HD, Lindquist MA, et al. Fatigue induces long-lasting detrimental changes in motor-skill learning. eLife. 2019;8:e40578.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TBD: Formulation of research question and study design, data extraction, interpretation of results, manuscript preparation and review. DLT: Formulation of research question and study design, interpretation of results, manuscript preparation and review. CMH: Quality analysis, manuscript preparation and review. GGH: Interpretation of results, manuscript preparation and review. CL: Interpretation of results, quality analysis, manuscript preparation and review.

Corresponding author

Correspondence to Timothy B. Davies.

Ethics declarations

Funding

No sources of funding were received to support this manuscript.

Conflict of interest

Timothy Davies, Derek Tran, Clorinda Hogan, Gregory Haff and Christopher Latella declare no conflicts of interest that may affect the results and the interpretation of results within this manuscript.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, T.B., Tran, D.L., Hogan, C.M. et al. Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis. Sports Med 51, 707–736 (2021). https://doi.org/10.1007/s40279-020-01408-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01408-3

Navigation