Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism?

Abstract

Exercise training in combination with optimal nutritional support is an effective strategy to maintain or increase skeletal muscle mass. A single bout of resistance exercise undertaken with adequate protein availability increases rates of muscle protein synthesis and, when repeated over weeks and months, leads to increased muscle fiber size. While resistance-based training is considered the ‘gold standard’ for promoting muscle hypertrophy, other modes of exercise may be able to promote gains in muscle mass. High-intensity interval training (HIIT) comprises short bouts of exercise at or above the power output/speed that elicits individual maximal aerobic capacity, placing high tensile stress on skeletal muscle, and somewhat resembling the demands of resistance exercise. While HIIT induces rapid increases in skeletal muscle oxidative capacity, the anabolic potential of HIIT for promoting concurrent gains in muscle mass and cardiorespiratory fitness has received less scientific inquiry. In this review, we discuss studies that have determined muscle growth responses after HIIT, with a focus on molecular responses, that provide a rationale for HIIT to be implemented among populations who are susceptible to muscle loss (e.g. middle-aged or older adults) and/or in clinical settings (e.g. pre- or post-surgery).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4):738–49. https://doi.org/10.1016/j.cell.2014.10.029.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE. 2017;12(1):e0169548. https://doi.org/10.1371/journal.pone.0169548.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Woo T, Yu S, Visvanathan R. Systematic literature review on the relationship between biomarkers of sarcopenia and quality of life in older people. J Frailty Aging. 2016;5(2):88–99. https://doi.org/10.14283/jfa.2016.93.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fisher G, Brown AW, Bohan Brown MM, Alcorn A, Noles C, Winwood L, et al. High intensity interval- vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS ONE. 2015;10(10):e0138853. https://doi.org/10.1371/journal.pone.0138853.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. https://doi.org/10.1093/ageing/afy106.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Falcon LJ, Harris-Love MO. Sarcopenia and the new icd-10-cm code: Screening, staging, and diagnosis considerations. Fed Pract. 2017;34(7):24–32.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Goates S, Du K, Arensberg MB, Gaillard T, Guralnik J, Pereira SL. Economic impact of hospitalizations in us adults with sarcopenia. J Frailty Aging. 2019;8(2):93–9. https://doi.org/10.14283/jfa.2019.10.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Norman K, Otten L. Financial impact of sarcopenia or low muscle mass - a short review. Clin Nutr. 2019;38(4):1489–95. https://doi.org/10.1016/j.clnu.2018.09.026.

    Article  PubMed  Google Scholar 

  9. 9.

    Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-year-old men and women. J Appl Physiol (1985). 1991;71(2):644–50.

    CAS  Article  Google Scholar 

  10. 10.

    Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci. 2000;55(12):M716–24.

    CAS  Article  Google Scholar 

  11. 11.

    Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450–72. https://doi.org/10.1007/s00421-003-0991-3.

    Article  PubMed  Google Scholar 

  12. 12.

    von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–33. https://doi.org/10.1007/s13539-010-0014-2.

    Article  Google Scholar 

  13. 13.

    Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of sarcopenia. J Nutr Health Aging. 2008;12(7):427–32.

    CAS  Article  Google Scholar 

  14. 14.

    Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients. 2018. https://doi.org/10.3390/nu10020180.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McGlory C, Devries MC, Phillips SM. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol (1985). 2017;122(3):541–8. https://doi.org/10.1152/japplphysiol.00613.2016.

    CAS  Article  Google Scholar 

  16. 16.

    Bigaard J, Frederiksen K, Tjonneland A, Thomsen BL, Overvad K, Heitmann BL, et al. Body fat and fat-free mass and all-cause mortality. Obes Res. 2004;12(7):1042–9. https://doi.org/10.1038/oby.2004.131.

    Article  PubMed  Google Scholar 

  17. 17.

    Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among us older adults. Med Sci Sports Exerc. 2018;50(3):458–67. https://doi.org/10.1249/mss.0000000000001448.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Merom D, Pye V, Macniven R, van der Ploeg H, Milat A, Sherrington C, et al. Prevalence and correlates of participation in fall prevention exercise/physical activity by older adults. Prev Med. 2012;55(6):613–7. https://doi.org/10.1016/j.ypmed.2012.10.001.

    Article  PubMed  Google Scholar 

  19. 19.

    Humphries B, Duncan MJ, Mummery WK. Prevalence and correlates of resistance training in a regional australian population. Br J Sports Med. 2010;44(9):653–6. https://doi.org/10.1136/bjsm.2008.048975.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Lin CY, Park JH, Hsueh MC, Sun WJ, Liao Y. Prevalence of total physical activity, muscle-strengthening activities, and excessive tv viewing among older adults; and their association with sociodemographic factors. Int J Environ Res Public Health. 2018. https://doi.org/10.3390/ijerph15112499.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bennie JA, Pedisic Z, van Uffelen JG, Charity MJ, Harvey JT, Banting LK, et al. Pumping iron in australia: prevalence, trends and sociodemographic correlates of muscle strengthening activity participation from a national sample of 195,926 adults. PLoS ONE. 2016;11(4):e0153225. https://doi.org/10.1371/journal.pone.0153225.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Schneider J. Age dependency of oxygen uptake and related parameters in exercise testing: an expert opinion on reference values suitable for adults. Lung. 2013;191(5):449–58. https://doi.org/10.1007/s00408-013-9483-3.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ekblom-Bak E, Ekblom B, Soderling J, Borjesson M, Blom V, Kallings LV, et al. Sex- and age-specific associations between cardiorespiratory fitness, cvd morbidity and all-cause mortality in in 266.109 adults. Prev Med. 2019;127:105799. https://doi.org/10.1016/j.ypmed.2019.105799.

    Article  PubMed  Google Scholar 

  24. 24.

    Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001. https://doi.org/10.1249/01.mss.0000038974.76900.92.

    Article  PubMed  Google Scholar 

  25. 25.

    Thompson WR. Worldwide survey of fitness trends for 2019. ACSM’s Health Fit J. 2018;22(6):10–7. https://doi.org/10.1249/fit.0000000000000438.

    Article  Google Scholar 

  26. 26.

    Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34. https://doi.org/10.1136/bjsports-2013-092576.

    Article  PubMed  Google Scholar 

  27. 27.

    Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84. https://doi.org/10.1113/jphysiol.2011.224725.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab (Physiologie appliquee, nutrition et metabolisme). 2009;34(3):428–32. https://doi.org/10.1139/h09-046.

    CAS  Article  Google Scholar 

  29. 29.

    Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494–503. https://doi.org/10.1136/bjsports-2015-095841.

    Article  PubMed  Google Scholar 

  30. 30.

    Cassidy S, Thoma C, Houghton D, Trenell MI. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60(1):7–23. https://doi.org/10.1007/s00125-016-4106-1.

    Article  PubMed  Google Scholar 

  31. 31.

    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. https://doi.org/10.1161/circulationaha.106.675041.

    Article  PubMed  Google Scholar 

  32. 32.

    Rognmo O, Hetland E, Helgerud J, Hoff J, Slordahl SA. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004;11(3):216–22.

    Article  Google Scholar 

  33. 33.

    Moholdt TT, Amundsen BH, Rustad LA, Wahba A, Lovo KT, Gullikstad LR, et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J. 2009;158(6):1031–7. https://doi.org/10.1016/j.ahj.2009.10.003.

    Article  PubMed  Google Scholar 

  34. 34.

    Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25(3):581–92. https://doi.org/10.1016/j.cmet.2017.02.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wyckelsma VL, Levinger I, McKenna MJ. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol. 2017;595(11):3345–59. https://doi.org/10.1113/jp273950.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Joanisse S, Gillen JB, Bellamy LM, McKay BR, Tarnopolsky MA, Gibala MJ, et al. Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans. FASEB J. 2013;27(11):4596–605. https://doi.org/10.1096/fj.13-229799.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Blue MNM, Smith-Ryan AE, Trexler ET, Hirsch KR. The effects of high intensity interval training on muscle size and quality in overweight and obese adults. J Sci Med Sport. 2017. https://doi.org/10.1016/j.jsams.2017.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56. https://doi.org/10.1249/MSS.0b013e3182199834.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985). 2011;111(6):1554–60. https://doi.org/10.1152/japplphysiol.00921.2011.

    CAS  Article  Google Scholar 

  40. 40.

    Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28(10):1327–30.

    CAS  Article  Google Scholar 

  41. 41.

    Joanisse S, McKay BR, Nederveen JP, Scribbans TD, Gurd BJ, Gillen JB, et al. Satellite cell activity, without expansion, after nonhypertrophic stimuli. Am J Physiol Regul Integr Comp Physiol. 2015;309(9):R1101–11. https://doi.org/10.1152/ajpregu.00249.2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JBL, et al. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS ONE. 2014;9(6):e98119. https://doi.org/10.1371/journal.pone.0098119.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60. https://doi.org/10.1113/jphysiol.2007.142109.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in pgc-1alpha and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30(2):959–70. https://doi.org/10.1096/fj.15-276907.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11. https://doi.org/10.1113/jphysiol.2006.112094.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014;28(6):2705–14. https://doi.org/10.1096/fj.13-246595.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112(7):2767–75. https://doi.org/10.1007/s00421-011-2254-z.

    Article  PubMed  Google Scholar 

  48. 48.

    Metcalfe RS, Tardif N, Thompson D, Vollaard NB. Changes in aerobic capacity and glycaemic control in response to reduced-exertion high-intensity interval training (rehit) are not different between sedentary men and women. Appl Physiol Nutr Metab. 2016;41(11):1117–23. https://doi.org/10.1139/apnm-2016-0253.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS ONE. 2016;11(4):e0154075. https://doi.org/10.1371/journal.pone.0154075.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sogaard D, Lund MT, Scheuer CM, Dehlbaek MS, Dideriksen SG, Abildskov CV, et al. High-intensity interval training improves insulin sensitivity in older individuals. Acta Physiol (Oxf). 2017. https://doi.org/10.1111/apha.13009.

    Article  Google Scholar 

  51. 51.

    Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9. https://doi.org/10.1016/j.exger.2016.06.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Mejías-Peña Y, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Martínez-Flórez S, Almar M, de Paz JA, et al. Effects of aerobic training on markers of autophagy in the elderly. Age (Dordr). 2016;38(2):33. https://doi.org/10.1007/s11357-016-9897-y.

    CAS  Article  Google Scholar 

  53. 53.

    Stensvold D, Viken H, Steinshamn SL, Dalen H, Støylen A, Loennechen JP, et al. Effect of exercise training for five years on all cause mortality in older adults—the generation 100 study: randomised controlled trial. BMJ. 2020;371:m3485. https://doi.org/10.1136/bmj.m3485.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab. 2020;45(6):591–600. https://doi.org/10.1139/apnm-2019-0495.

    Article  PubMed  Google Scholar 

  55. 55.

    Kim HK, Hwang CL, Yoo JK, Hwang MH, Handberg EM, Petersen JW, et al. All-extremity exercise training improves arterial stiffness in older adults. Med Sci Sports Exerc. 2017;49(7):1404–11. https://doi.org/10.1249/mss.0000000000001229.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Oliveira BRR, Santos TM, Kilpatrick M, Pires FO, Deslandes AC. Affective and enjoyment responses in high intensity interval training and continuous training: a systematic review and meta-analysis. PLoS ONE. 2018;13(6):e0197124. https://doi.org/10.1371/journal.pone.0197124.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Martinez-Valdes E, Falla D, Negro F, Mayer F, Farina D. Differential motor unit changes after endurance or high-intensity interval training. Med Sci Sports Exerc. 2017;49(6):1126–36. https://doi.org/10.1249/mss.0000000000001209.

    Article  PubMed  Google Scholar 

  58. 58.

    Martinez-Valdes E, Farina D, Negro F, Del Vecchio A, Falla D. Early motor unit conduction velocity changes to high-intensity interval training versus continuous training. Med Sci Sports Exerc. 2018;50(11):2339–50. https://doi.org/10.1249/mss.0000000000001705.

    Article  PubMed  Google Scholar 

  59. 59.

    Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch. 2004;449(1):56–65. https://doi.org/10.1007/s00424-004-1304-3.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Edgett BA, Foster WS, Hankinson PB, Simpson CA, Little JP, Graham RB, et al. Dissociation of increases in pgc-1alpha and its regulators from exercise intensity and muscle activation following acute exercise. PLoS ONE. 2013;8(8):e71623. https://doi.org/10.1371/journal.pone.0071623.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  Google Scholar 

  62. 62.

    Duchateau J, Semmler JG, Enoka RM. Training adaptations in the behavior of human motor units. J Appl Physiol (1985). 2006;101(6):1766–75. https://doi.org/10.1152/japplphysiol.00543.2006.

    Article  Google Scholar 

  63. 63.

    Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131–43. https://doi.org/10.1016/j.freeradbiomed.2016.02.007.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Rundqvist HC, Montelius A, Osterlund T, Norman B, Esbjornsson M, Jansson E. Acute sprint exercise transcriptome in human skeletal muscle. PLoS ONE. 2019;14(10):e0223024. https://doi.org/10.1371/journal.pone.0223024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Miyamoto-Mikami E, Tsuji K, Horii N, Hasegawa N, Fujie S, Homma T, et al. Gene expression profile of muscle adaptation to high-intensity intermittent exercise training in young men. Sci Rep. 2018;8(1):16811. https://doi.org/10.1038/s41598-018-35115-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca(2)(+) sensitivity and sarcoplasmic reticulum Ca(2)(+) release in human skeletal muscle fibers. J Appl Physiol. 2012;112(5):728–36. https://doi.org/10.1152/japplphysiol.01331.2011.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem. 2001;276(7):4527–30. https://doi.org/10.1074/jbc.R000028200.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Gibala MJ, Hawley JA. Sprinting toward fitness. Cell Metab. 2017;25(5):988–90. https://doi.org/10.1016/j.cmet.2017.04.030.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol. 2015;401(1):75–91. https://doi.org/10.1016/j.ydbio.2015.01.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Hjorth M, Norheim F, Meen AJ, Pourteymour S, Lee S, Holen T, et al. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiol Rep. 2015. https://doi.org/10.14814/phy2.12473.

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17. https://doi.org/10.1113/jphysiol.2008.153916.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Dreyer HC, Fujita S, Glynn EL, Drummond MJ, Volpi E, Rasmussen BB. Resistance exercise increases leg muscle protein synthesis and mtor signalling independent of sex. Acta Physiol (Oxf). 2010;199(1):71–81. https://doi.org/10.1111/j.1748-1716.2010.02074.x.

    CAS  Article  Google Scholar 

  73. 73.

    Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286(1):E92-101. https://doi.org/10.1152/ajpendo.00366.2003.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Bell KE, Seguin C, Parise G, Baker SK, Phillips SM. Day-to-day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. J Gerontol A Biol Sci Med Sci. 2015;70(8):1024–9. https://doi.org/10.1093/gerona/glu313.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, et al. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015;29(11):4485–96. https://doi.org/10.1096/fj.15-273755.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Mitchell CJ, Churchward-Venne TA, Parise G. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0089431.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol (1985). 2009;107(5):1655–62. https://doi.org/10.1152/japplphysiol.91234.2008.

    CAS  Article  Google Scholar 

  78. 78.

    Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrao ME, Jannig PR, et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol. 2016;594(18):5209–22. https://doi.org/10.1113/jp272472.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Damas F, Phillips SM, Lixandrao ME, Vechin FC, Libardi CA, Roschel H, et al. Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur J Appl Physiol. 2016;116(1):49–56. https://doi.org/10.1007/s00421-015-3243-4.

    Article  PubMed  Google Scholar 

  80. 80.

    Joanisse S, Snijders T, Nederveen JP, Parise G. The impact of aerobic exercise on the muscle stem cell response. Exerc Sport Sci Rev. 2018;46(3):180–7. https://doi.org/10.1249/jes.0000000000000153.

    Article  PubMed  Google Scholar 

  81. 81.

    Nederveen JP, Joanisse S, Seguin CM, Bell KE, Baker SK, Phillips SM, et al. The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiol (Oxf). 2015;215(4):177–90. https://doi.org/10.1111/apha.12601.

    CAS  Article  Google Scholar 

  82. 82.

    Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, et al. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle. 2016;7(5):547–54. https://doi.org/10.1002/jcsm.12105.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Khacho M, Slack RS. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol. 2017;49:1–8. https://doi.org/10.1016/j.ceb.2017.11.003.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle. 2020. https://doi.org/10.1002/jcsm.12601.

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Charifi N, Kadi F, Feasson L, Denis C. Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve. 2003;28(1):87–92. https://doi.org/10.1002/mus.10394.

    Article  PubMed  Google Scholar 

  86. 86.

    Verney J, Kadi F, Charifi N, Feasson L, Saafi MA, Castells J, et al. Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve. 2008;38(3):1147–54. https://doi.org/10.1002/mus.21054.

    Article  PubMed  Google Scholar 

  87. 87.

    Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, et al. Prolonged exercise training improves the acute type ii muscle fibre satellite cell response in healthy older men. J Physiol. 2019;597(1):105–19. https://doi.org/10.1113/jp276260.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Sultana RN, Sabag A, Keating SE, Johnson NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01167-w.

    Article  PubMed  Google Scholar 

  89. 89.

    Bagley L, Slevin M, Bradburn S, Liu D, Murgatroyd C, Morrissey G, et al. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise. BMJ Open Sport Exerc Med. 2016;2(1):e000056. https://doi.org/10.1136/bmjsem-2015-000056.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Bruseghini P, Calabria E, Tam E, Milanese C, Oliboni E, Pezzato A, et al. Effects of eight weeks of aerobic interval training and of isoinertial resistance training on risk factors of cardiometabolic diseases and exercise capacity in healthy elderly subjects. Oncotarget. 2015;6(19):16998–7015. https://doi.org/10.18632/oncotarget.4031.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59(1):56–66. https://doi.org/10.1007/s00125-015-3741-2.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Dohlmann TL, Hindso M, Dela F, Helge JW, Larsen S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol Rep. 2018;6(18):e13857. https://doi.org/10.14814/phy2.13857.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Gahreman D, Heydari M, Boutcher Y, Freund J, Boutcher S. The effect of green tea ingestion and interval sprinting exercise on the body composition of overweight males: a randomized trial. Nutrients. 2016. https://doi.org/10.3390/nu8080510.

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring). 2013;21(11):2249–55. https://doi.org/10.1002/oby.20379.

    CAS  Article  Google Scholar 

  95. 95.

    Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467. https://doi.org/10.1155/2012/480467.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kong Z, Sun S, Liu M, Shi Q. Short-term high-intensity interval training on body composition and blood glucose in overweight and obese young women. J Diabetes Res. 2016;2016:4073618. https://doi.org/10.1155/2016/4073618.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Maillard F, Rousset S, Pereira B, Traore A, de Pradel Del Amaze P, Boirie Y, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42(6):433–41. https://doi.org/10.1016/j.diabet.2016.07.031.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol (1985). 2016;121(1):279–88. https://doi.org/10.1152/japplphysiol.00024.2016.

    Article  Google Scholar 

  99. 99.

    Sculthorpe NF, Herbert P, Grace F. One session of high-intensity interval training (hiit) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: a randomized controlled trial. Medicine (Baltimore). 2017;96(6):e6040. https://doi.org/10.1097/md.0000000000006040.

    Article  Google Scholar 

  100. 100.

    Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond). 2008;32(4):684–91. https://doi.org/10.1038/sj.ijo.0803781.

    CAS  Article  Google Scholar 

  101. 101.

    Ziemann E, Grzywacz T, Luszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25(4):1104–12. https://doi.org/10.1519/JSC.0b013e3181d09ec9.

    Article  PubMed  Google Scholar 

  102. 102.

    Ravnholt T, Tybirk J, Jorgensen NR, Bangsbo J. High-intensity intermittent “5-10-15” running reduces body fat, and increases lean body mass, bone mineral density, and performance in untrained subjects. Eur J Appl Physiol. 2018;118(6):1221–30. https://doi.org/10.1007/s00421-018-3851-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Stensvold D, Tjonna AE, Skaug EA, Aspenes S, Stolen T, Wisloff U, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985). 2010;108(4):804–10. https://doi.org/10.1152/japplphysiol.00996.2009.

    Article  Google Scholar 

  104. 104.

    Brown EC, Hew-Butler T, Marks CRC, Butcher SJ, Choi MD. The impact of different high-intensity interval training protocols on body composition and physical fitness in healthy young adult females. Biores Open Access. 2018;7(1):177–85. https://doi.org/10.1089/biores.2018.0032.

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Osawa Y, Azuma K, Tabata S, Katsukawa F, Ishida H, Oguma Y, et al. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access J Sports Med. 2014;5:257–65. https://doi.org/10.2147/oajsm.s68932.

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Fex A, Leduc-Gaudet JP, Filion ME, Karelis AD, Aubertin-Leheudre M. Effect of elliptical high intensity interval training on metabolic risk factor in pre- and type 2 diabetes patients: a pilot study. J Phys Act Health. 2015;12(7):942–6. https://doi.org/10.1123/jpah.2014-0123.

    Article  PubMed  Google Scholar 

  107. 107.

    Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011;43(1):115–22. https://doi.org/10.1249/MSS.0b013e3181e5eacd.

    Article  PubMed  Google Scholar 

  108. 108.

    Matsuo T, Saotome K, Seino S, Eto M, Shimojo N, Matsushita A, et al. Low-volume, high-intensity, aerobic interval exercise for sedentary adults: VO(2)max, cardiac mass, and heart rate recovery. Eur J Appl Physiol. 2014;114(9):1963–72. https://doi.org/10.1007/s00421-014-2917-7.

    Article  PubMed  Google Scholar 

  109. 109.

    Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010;42(10):1951–8. https://doi.org/10.1249/MSS.0b013e3181d99203.

    Article  PubMed  Google Scholar 

  110. 110.

    Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of dxa to assess body composition. Obesity (Silver Spring). 2012;20(1):30–9. https://doi.org/10.1038/oby.2011.211.

    Article  Google Scholar 

  111. 111.

    Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A critical evaluation of the biological construct skeletal muscle hypertrophy: Size matters but so does the measurement. Front Physiol. 2019. https://doi.org/10.3389/fphys.2019.00247.

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: Using dual-energy X-ray absorptiometry (dxa) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab. 2015;25(2):198–215. https://doi.org/10.1123/ijsnem.2013-0228.

    Article  PubMed  Google Scholar 

  113. 113.

    Tavoian D, Ampomah K, Amano S, Law TD, Clark BC. Changes in dxa-derived lean mass and mri-derived cross-sectional area of the thigh are modestly associated. Sci Rep. 2019;9(1):10028. https://doi.org/10.1038/s41598-019-46428-w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985). 1998;85(1):115–22. https://doi.org/10.1152/jappl.1998.85.1.115.

    CAS  Article  Google Scholar 

  115. 115.

    Estes RR, Malinowski A, Piacentini M, Thrush D, Salley E, Losey C, et al. The effect of high intensity interval run training on cross-sectional area of the vastus lateralis in untrained college students. Int J Exerc Sci. 2017;10(1):137–45.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985). 2011;110(3):834–45. https://doi.org/10.1152/japplphysiol.00949.2010.

    CAS  Article  Google Scholar 

  117. 117.

    Moore DR, Churchward-Venne TA, Witard O. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015. https://doi.org/10.1093/gerona/glu103.

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591(11):2911–23. https://doi.org/10.1113/jphysiol.2013.253203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Dai JM, Yu MX, Shen ZY, Guo CY, Zhuang SQ, Qiu XS. Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mtorc1 signaling pathway. Nutrients. 2015;7(5):3387–400. https://doi.org/10.3390/nu7053387.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273(1 Pt 1):E122–9.

    CAS  PubMed  Google Scholar 

  121. 121.

    Vliet SV, Beals JW, Martinez IG, Skinner SK, Burd NA. Achieving optimal post-exercise muscle protein remodeling in physically active adults through whole food consumption. Nutrients. 2018. https://doi.org/10.3390/nu10020224.

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Phillips SM. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr Metab (Lond). 2016;13:64. https://doi.org/10.1186/s12986-016-0124-8.

    CAS  Article  Google Scholar 

  123. 123.

    Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2017. https://doi.org/10.1136/bjsports-2017-097608.

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. https://doi.org/10.3945/ajcn.112.037556.

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95(6):1403–12. https://doi.org/10.3945/ajcn.111.020800.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–25. https://doi.org/10.1113/jphysiol.2011.211888.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2015;47(3):547–55. https://doi.org/10.1249/mss.0000000000000447.

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1254–62. https://doi.org/10.1152/ajpregu.00348.2010.

    CAS  Article  PubMed  Google Scholar 

  129. 129.

    Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–83. https://doi.org/10.1007/s00421-010-1768-0.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Mitchell CJ, Churchward-Venne TA, Cameron-Smith D, Phillips SM. What is the relationship between the acute muscle protein synthesis response and changes in muscle mass? J Appl Physiol (1985). 2015;118(4):495–7. https://doi.org/10.1152/japplphysiol.00609.2014.

    CAS  Article  Google Scholar 

  131. 131.

    Rundqvist HC, Esbjornsson M, Rooyackers O, Osterlund T, Moberg M, Apro W, et al. Influence of nutrient ingestion on amino acid transporters and protein synthesis in human skeletal muscle after sprint exercise. J Appl Physiol (1985). 2017. https://doi.org/10.1152/japplphysiol.00244.2017.

    Article  Google Scholar 

  132. 132.

    Leuchtmann AB, Mueller SM, Aguayo D, Petersen JA, Ligon-Auer M, Flück M, et al. Resistance training preserves high-intensity interval training induced improvements in skeletal muscle capillarization of healthy old men: a randomized controlled trial. Sci Rep. 2020;10(1):6578. https://doi.org/10.1038/s41598-020-63490-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Gaffney KA, Lucero A, Stoner L, Faulkner J, Whitfield P, Krebs J, et al. Nil whey protein effect on glycemic control after intense mixed-mode training in type 2 diabetes. Med Sci Sports Exerc. 2018;50(1):11–7. https://doi.org/10.1249/mss.0000000000001404.

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.

    CAS  Article  Google Scholar 

  135. 135.

    Esbjörnsson M, Rundqvist HC, Mascher H, Österlund T, Rooyackers O, Blomstrand E, et al. Sprint exercise enhances skeletal muscle p70s6k phosphorylation and more so in women than in men. Acta Physiol (Oxf). 2012;205(3):411–22. https://doi.org/10.1111/j.1748-1716.2012.02404.x.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Hawley.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Marcus Callahan, Evelyn Parr, John Hawley and Donny Camera declare that they have no conflicts of interest relevant to the content of this review.

Authorship contributions

MC wrote the first draft of the manuscript. MC, EBP, JH and DMC revised the original manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Callahan, M.J., Parr, E.B., Hawley, J.A. et al. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism?. Sports Med 51, 405–421 (2021). https://doi.org/10.1007/s40279-020-01397-3

Download citation