Effects and Dose–Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis

  • Armin H. Paravlic
  • Maamer Slimani
  • David Tod
  • Uros Marusic
  • Zoran Milanovic
  • Rado Pisot
Systematic Review



Motor imagery (MI), a mental simulation of a movement without overt muscle contraction, has been largely used to improve general motor tasks. However, the effects of MI practice on maximal voluntary strength (MVS) remain equivocal.


The aims of this meta-analysis were to (1) estimate whether MI practice intervention can meaningfully improve MVS in healthy adults; (2) compare the effects of MI practice on MVS with its combination with physical practice (MI-C), and with physical practice (PP) training alone; and (3) investigate the dose–response relationships of MI practice.

Data Sources and Study Eligibility

Seven electronic databases were searched up to April 2017. Initially 717 studies were identified; however, after evaluation of the study characteristics, data from 13 articles involving 370 participants were extracted. The meta-analysis was completed on MVS as the primary parameter. In addition, parameters associated with training volume, training intensity, and time spent training were used to investigate dose–response relationships.


MI practice moderately improved MVS. When compared to conventional PP, effects were of small benefit in favour of PP. MI-C when compared to PP showed unclear effects. MI practice produced moderate effects in both upper and lower extremities on MVS. The cortical representation area of the involved muscles did not modify the effects. Meta-regression analysis revealed that (a) a training period of 4 weeks, (b) a frequency of three times per week, (c) two to three sets per single session, (d) 25 repetitions per single set, and (e) single session duration of 15 min were associated with enhanced improvements in muscle strength following MI practice. Similar dose–response relationships were observed following MI and PP.


The present meta-analysis demonstrates that compared to a no-exercise control group of healthy adults, MI practice increases MVS, but less than PP. These findings suggest that MI practice could be considered as a substitute or additional training tool to preserve muscle function when athletes are not exposed to maximal training intensities.



We would like to thank Dr. Cécil J. W. Meulenberg for proof reading the manuscript.

Compliance with Ethical Standards


No funding was received for this work.

Conflicts of interest

Armin Paravlic, Mammer Slimani, David Tod, Uros Marusic, Zoran Milanovic, and Rado Pisot declare that they have no conflict of interest relevant to the content of this review.


  1. 1.
    Tod D, Edwards C, McGuigan M, Lovell G. A systematic review of the effect of cognitive strategies on strength performance. Sports Med. 2015;45(11):1589–602.PubMedCrossRefGoogle Scholar
  2. 2.
    Tod D, Iredale F, Gill N. “Psyching-up” and muscular force production. Sports Med. 2003;33(1):47–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Shelton TO, Mahoney MJ. The content and effect of “psyching-up” strategies in weight lifters. Cogn Ther Res. 1978;2(3):275–84.CrossRefGoogle Scholar
  4. 4.
    Whelan JP, Epkins CC, Meyers AW. Arousal interventions for athletic performance: influence of mental preparation and competitive experience. Anxiety Res. 1990;2(4):293–307.CrossRefGoogle Scholar
  5. 5.
    Gould D, Weinberg R, Jackson A. Mental preparation strategies, cognitions, and strength performance. J Sport Psychol. 1980;2(4):329–39.CrossRefGoogle Scholar
  6. 6.
    Cumming J, Williams SE. The role of imagery in performance. In: Murphy SM, editor. The Oxford Handbook of sport performance and psychology. New York: Oxford University Press; 2012. pp. 213–32.Google Scholar
  7. 7.
    Braun S, Kleynen M, van Heel T, Kruithof N, Wade D, Beurskens A. The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Front Hum Neurosci. 2013;7(August):390.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Caligiore D, Mustile M, Spalletta G, Baldassarre G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci Biobehav Rev. 2017;72:210–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21(1):68–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Braun S, Beurskens A, Kleynen M, Schols J, Wade D. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. J Physiother. 2011;57(1):27–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Newsome J, Knight P, Balnave R. Use of mental imagery to limit strength loss after immobilization. J Sport Rehabil. 2003;12(3):249–58.CrossRefGoogle Scholar
  12. 12.
    Lee H, Kim H, Ahn M, You Y. Effects of proprioception training with exercise imagery on balance ability of stroke patients. J Phys Ther Sci. 2015;27:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dunsky A, Dickstein R, Marcovitz E, Levy S, Deutsch J. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehabil. 2008;89(8):1580–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Lebon F, Guillot A, Collet C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback. 2012;37(1):45–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Cupal DD, Brewer BW. Effects of relaxation and guided imagery on knee strength, reinjury anxiety, and pain following anterior cruciate ligament reconstruction. Rehabil Psychol. 2001;46(1):28–43.CrossRefGoogle Scholar
  16. 16.
    Marusic U, Grosprêtre S, Paravlic A, Kovač S, Pišot R, Taube W. Motor Imagery during Action Observation of Locomotor Tasks Improves Rehabilitation Outcome in Older Adults after Total Hip Arthroplasty. Neural Plast. 2018.  https://doi.org/10.1155/2018/5651391.
  17. 17.
    Richardson A. Mental imagery. Berlin: Springer; 1969.CrossRefGoogle Scholar
  18. 18.
    Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Martin KA, Moritz SE, Hall CR. Imagery use in sport: a literature review and applied model. Sport Psychol. 1999;13:245–68.CrossRefGoogle Scholar
  20. 20.
    Murphy SM. Imagery interventions in sport. Med Sci Sports Exerc. 1993;26:486–94.Google Scholar
  21. 21.
    Orlick T, Partington J. Mental links to excellence. Sport Psychol. 1988;2:105–30.CrossRefGoogle Scholar
  22. 22.
    Lotze M. Kinesthetic imagery of musical performance. Front Hum Neurosci. 2013;7:1–9.CrossRefGoogle Scholar
  23. 23.
    Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(2):187–245.CrossRefGoogle Scholar
  24. 24.
    Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 1996;16(23):7688–98.PubMedGoogle Scholar
  25. 25.
    Finke RA. The functional equivalence of mental images and errors of movement. Cogn Psychol. 1979;11(2):235–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2000;2001(12):1–19.Google Scholar
  27. 27.
    Decety J. Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn. 1989;11(1):87–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Decety J, Lindgren M. Sensation of effort and duration of mentally executed actions. Scand J Psychol. 1991;32(2):97–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Feltz D, Landers D. The effects of mental practice on motor skill learning and performance: a meta-analysis. J Sport Psychol. 1983;5(1):25–57.CrossRefGoogle Scholar
  31. 31.
    Scholefield SC, Cooke CP, Van Vliet PM, Heneghan NR. The effectiveness of mental imagery for improving strength in an asymptomatic population. Phys Ther Rev. 2015;20(2):86–97.CrossRefGoogle Scholar
  32. 32.
    Slimani M, Tod D, Chaabene H, Miarka B, Chamari K. Effects of mental imagery on muscular strength in healthy and patient participants: a systematic review. J Sport Sci Med. 2016;15(3):434–50.Google Scholar
  33. 33.
    Manochio JP, Lattari E, Mello Portugal EM, Monteiro-Junior RS, Paes F, Budde H, et al. From mind to body: is mental practice effective on strength gains? A meta-analysis. CNS Neurol Disord Targets. 2015;14(9):1145–51.CrossRefGoogle Scholar
  34. 34.
    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester, UK: Wiley; 2009. pp. 249–95.Google Scholar
  35. 35.
    Schuster C, Hilfiker R, Amft O, Scheidhauer A, Andrews B, Butler J, et al. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011;9(1):75.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Driskell JE, Copper C, Moran A. Does mental practice enhance performance? J Appl Psychol. 1994;79(4):481–92.CrossRefGoogle Scholar
  37. 37.
    Yu Q-H, Fu ASN, Kho A, Li J, Sun X-H, Chan CCH. Imagery perspective among young athletes: differentiation between external and internal visual imagery. J Sport Heal Sci. 2016;5(2):211–8.CrossRefGoogle Scholar
  38. 38.
    Olsson C-J, Jonsson B, Larsson A, Nyberg L. Motor representations and practice affect brain systems underlying imagery: an FMRI study of internal imagery in novices and active high jumpers. Open Neuroimaging J. 2008;2:5–13.CrossRefGoogle Scholar
  39. 39.
    Yao WX, Ranganathan VK, Allexandre D, Siemionow V, Yue GH. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Front Hum Neurosci. 2013;7(September):561.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Decety Grèzes. Neural mechanisms subserving the perception of human actions. Trends Cogn Sci. 1999;3(5):172–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Peterson MD, Rhea MR, Alvar BA. Maximizing strength development in athletes: a meta-analysis to determine the dose–response relationship. J Strength Cond Res. 2004;18(2):377.PubMedGoogle Scholar
  43. 43.
    American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;41(3):687–708.Google Scholar
  44. 44.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (reprinted from annals of internal medicine). Phys Ther. 2009;89(9):873–80.PubMedGoogle Scholar
  45. 45.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Cochrane. Consumers and Communication Group resources for authors (Internet). 2016 (cited 15 Feb 2017). p. 1. http://cccrg.cochrane.org/author-resources.
  47. 47.
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMedGoogle Scholar
  48. 48.
    Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557–60.CrossRefGoogle Scholar
  49. 49.
    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Lebon F, Collet C, Guillot A. Benefits of motor imagery training on muscle strength. J Strength Cond Res. 2010;24(6):1680–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol. 1992;67(5):1114–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith D, Collins D, Holmes P. Impact and mechanism of mental practice effects on strength. Int J Sport Exerc Psychol. 2003;1(3):293–306.CrossRefGoogle Scholar
  53. 53.
    Reiser M. Kraftgewinne durch Vorstellung maximaler Muskelkontraktionen. Zeitschrift für Sport. 2005;12(1):11–21.CrossRefGoogle Scholar
  54. 54.
    Sidaway B, Trzaska AR. Can mental practice increase ankle dorsiflexor torque? Phys Ther. 2005;85(10):1053–60.PubMedGoogle Scholar
  55. 55.
    Darvishi M, Ahmadi S, Hierani A, Jabari N. Effects of motor imagery and maximal isometric action on grip strength of elderly men. World Appl Sci J. 2013;24(4):556–60.Google Scholar
  56. 56.
    Jiang C, Ranganathan VK, Zhang J, Siemionow V, Yue GH. Motor effort training with low exercise intensity improves muscle strength and descending command in aging. Medicine (Baltimore). 2016;24(August 2015):1–7.Google Scholar
  57. 57.
    Shackell EM, Standing LG. Mind over matter: mental training increases physical strength. N Am J Psychol. 2007;9(1):189–200.Google Scholar
  58. 58.
    Wright CJ, Smith D. The effect of PETTLEP imagery on strength performance. Int J Sport Exerc Psychol. 2009;7(1):18–31.CrossRefGoogle Scholar
  59. 59.
    de Ruiter CJ, Hutter V, Icke C, Groen B, Gemmink A, Smilde H, et al. The effects of imagery training on fast isometric knee extensor torque development. J Sports Sci. 2012;30(2):166–74.PubMedCrossRefGoogle Scholar
  60. 60.
    Holmes PS, Collins DJ. The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol. 2001;13(1):60–83.CrossRefGoogle Scholar
  61. 61.
    Bahari SM, Damirchi A, Rahmaninia F, Salehian MH. The effects of mental practice on strength gain and electromyographic changes in elbow flexor muscles. Ann Biol Res. 2011;2(6):198–207.Google Scholar
  62. 62.
    Niazi SM, Bai N, Shahamat MD, Branch J, Branch A. Investigation of effects of imagery training on changes in the electrical activity of motor units of muscles and their strength in the lower extremities. Eur J Exp Biol. 2014;4(1):595–9.Google Scholar
  63. 63.
    Cornwall M, Bruscato M, Barry S. Effect of mental practice on isometric muscular strength. J Orthop Sport Phys Ther. 1991;13(5):231–4.CrossRefGoogle Scholar
  64. 64.
    Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sport Exerc. 1998;31(March):38–45.Google Scholar
  65. 65.
    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(81):1725–89.PubMedCrossRefGoogle Scholar
  66. 66.
    Abazović E, Kovačević E, Kovač S, Bradić J. The effect of training of the non-dominant knee muscles on ipsi- and contralateral strength gains. Isokinet Exerc Sci. 2015;23(3):177–82.CrossRefGoogle Scholar
  67. 67.
    Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96(5):1861–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Adamson M, MacQuaide N, Helgerud J, Hoff J, Kemi OJ. Unilateral arm strength training improves contralateral peak force and rate of force development. Eur J Appl Physiol. 2008;103(5):553–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH. From mental power to muscle power—gaining strength by using the mind. Neuropsychologia. 2004;42(7):944–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Richardson A. Mental practice: a review and discussion part II. Res Q Am Assoc Health Phys Educ Recreat. 2015;1967(38):263–73.Google Scholar
  71. 71.
    Zijdewind I, Toering ST, Bessem B, Van der Laan O, Diercks RL. Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve. 2003;28(2):168–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Herbert RD, Dean C, Gandevia SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand. 1998;163(4):361–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol. 1987;391:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Akima H, Takahashi H, Kuno SY, Masuda K, Masuda T, Shimojo H, et al. Early phase adaptations of muscle use and strength to isokinetic training. Med Sci Sports Exerc. 1999;31(4):588–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Hakkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53(6):B415–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Higbie EJ, Cureton KJ, Iii GLW, Prior BM, Warren GL III. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(3):2173–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Formaggio E, Storti SF, Cerini R, Fiaschi A, Manganotti P. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magn Reson Imaging. 2010;28(10):1403–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Olsson C, Jonsson B, Nyberg L. Learning by doing versus learning by thinking: an fMRI study of motor and mental training. Front Hum Neurosci. 2008;2(5):1–7.Google Scholar
  79. 79.
    Lacourse MG, Orr ELR, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage. 2005;27(3):505–19.PubMedCrossRefGoogle Scholar
  80. 80.
    Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.PubMedCrossRefGoogle Scholar
  81. 81.
    Fontani G, Migliorini S, Benocci R, Facchini A, Casini M, Corradeschi F. Effect of mental imagery on the development of skilled motor actions. Percept Mot Skills. 2007;105:803–26.PubMedCrossRefGoogle Scholar
  82. 82.
    Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol. 2016;115:1279–88.PubMedCrossRefGoogle Scholar
  83. 83.
    Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306–26.PubMedCrossRefGoogle Scholar
  84. 84.
    Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49.PubMedCrossRefGoogle Scholar
  85. 85.
    Dechent P, Merboldt K-D, Frahm J. Is the human primary motor cortex involved in motor imagery? Brain Res Cogn Brain Res. 2004;19(2):138–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Debarnot U, Clerget E, Olivier E. Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS One. 2011;6(10):e26717.Google Scholar
  87. 87.
    Li S, Latash ML, Zatsiorsky VM. Effects of motor imagery on finger force responses to transcranial magnetic stimulation. Cogn Brain Res. 2004;20(2):273–80.CrossRefGoogle Scholar
  88. 88.
    Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28(1):377–401.PubMedCrossRefGoogle Scholar
  89. 89.
    Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, et al. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behav Brain Res. 2012;234(1):26–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393–415.PubMedCrossRefGoogle Scholar
  91. 91.
    Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%. J Phys Ther Sci. 2015;27:2775–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bunno Y, Yurugi Y, Onigata C, Suzuki T, Iwatsuki H. Influence of motor imagery of isometric opponens pollicis activity on the excitability of spinal motor neurons: a comparison using different muscle contraction strengths. J Phys Ther Sci. 2014;26(7):1069–73.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bunno Y, Suzuki T, Iwatsuki H. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity. J Phys Ther Sci. 2015;27(12):3793–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Park J. Influence of mental practice on upper limb muscle activity and activities of daily living in chronic stroke patients. J Phys Ther Sci. 2016;28:1061–3.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Milton J, Small SL, Solodkin A. Imaging motor imagery: methodological issues related to expertise. Methods. 2008;45(4):336–41.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, et al. Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies. Front Aging Neurosci. 2016;10(June):1–15.Google Scholar
  97. 97.
    Decety J. Neural representations for action. Rev Neurosci. 1996;7(4):285–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Lotze M, Zentgraf K. Contribution of the primary motor cortex to motor imagery. In: Guillot A, Collet C, editors. Neurophysiological foundations of mental and motor imagery. New York: Oxford University Press; 2010. pp. 31–45.Google Scholar
  99. 99.
    Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18(12):2775–88.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ranganathan VK, Kuykendall T, Siemionow V, Yue GH. Level of mental effort determines training induced strength increases. Abstr Soc Neurosci. 2002;32:768.Google Scholar
  102. 102.
    Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res. 2000;133(3):303–11.PubMedCrossRefGoogle Scholar
  103. 103.
    Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage. 2008;40(2):828–37.PubMedCrossRefGoogle Scholar
  104. 104.
    Guillot A, Di Rienzo F, MacIntyre T, Moran A, Collet C. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012;6(September):1–22.Google Scholar
  105. 105.
    Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14(11):1246–55.PubMedCrossRefGoogle Scholar
  106. 106.
    Jeannerod M. Mental imagery in the motor context. Neuropsychologia. 1995;33(11):1419–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Gandevia SC. Mind, muscles and motoneurones. J Sci Med Sport. 1999;2(3):167–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Moran A. Conceptual and methodological issues in the measurement of mental imagery skills in athletes. J Sport Behav. 1993;16:156–70.Google Scholar
  109. 109.
    Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage. 2008;41(4):1471–83.PubMedCrossRefGoogle Scholar
  110. 110.
    García Carrasco D, Aboitiz Cantalapiedra J. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurology (English Ed.). 2016;31(1):43–52.CrossRefGoogle Scholar
  111. 111.
    Mahmoud N. The efficacy of motor imagery training on range of motion, pain and function of patients after total knee replacement. 2016. CUNY Academic Works. http://academicworks.cuny.edu/gc_etds/1235. Accessed 11 Jan 2017.
  112. 112.
    Jiang C-H, Ranganathan VK, Siemionow V, Yue GH. The level of effort, rather than muscle exercise intensity determines strength gain following a six-week training. Life Sci. 2017;178:30–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol. 2007;66(1):18–27.PubMedCrossRefGoogle Scholar
  114. 114.
    Penfield W, Rasmussen T. The cerebral cortex of man: a clinical study of localization of function. J Am Med Assoc. 1950;144(16):1412.Google Scholar
  115. 115.
    Bernhard C, Bohm E. Cortical representation and functional significance of the corticomotoneuronal system. AMA Arch Neurol Psychiatry. 1954;72(4):473–502.PubMedCrossRefGoogle Scholar
  116. 116.
    de Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982;329:113–28.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Abbruzzese G, Assini A, Buccolieri A, Schieppati M, Trompetto C. Comparison of intracortical inhibition and facilitation in distal and proximal arm muscles in humans. J Physiol. 1999;514(3):895–903.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Yamada H, Kaneko K, Masuda T. Effects of voluntary activation on neuromuscular endurance analyzed by surface electromyography. Percept Mot Skills. 2002;95:613–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, et al. Co-activation and tension regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):149–56.PubMedCrossRefGoogle Scholar
  121. 121.
    Herbert RD, Gandevia SC. Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol. 1996;80(4):1351–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Bergmann J, Kumpulainen S, Avela J, Gruber M. Acute effects of motor imagery on performance and neuromuscular control in maximal drop jumps. J Imag Res Sport Phys Act. 2013;8(1):45–53.Google Scholar
  123. 123.
    Avila BJ, Brown LE, Coburn JW, Statler TA. Effects of imagery on force production and jump performance. J Exerc Physiol. 2015;18(4):42–8.Google Scholar
  124. 124.
    Wakefield C, Smith D. From strength to strength: a single-case design study of PETTLEP imagery frequency. Sport Psychol. 2011;25(3):305–20.CrossRefGoogle Scholar
  125. 125.
    Krieger JW. Single versus multiple sets of resistance exercise: a meta-regression. J Strength Cond Res. 2009;23(6):1890–901.PubMedCrossRefGoogle Scholar
  126. 126.
    Granacher U, Borde R, Hortoba T. Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45:1693–720.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Babault N, Pousson M, Ballay Y, Van Hoecke J. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol. 2001;91(6):2628–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2014;16(1):1–10.PubMedCrossRefGoogle Scholar
  129. 129.
    Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Loenneke JP, Wilson JM, Pujol TJ, Bemben MG. Acute and chronic testosterone response to blood flow restricted exercise. Horm Metab Res. 2011;43(10):669–73.PubMedCrossRefGoogle Scholar
  131. 131.
    Tran QT, Docherty D, Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur J Appl Physiol. 2006;98(4):402–10.PubMedCrossRefGoogle Scholar
  132. 132.
    Burd NA, Andrews RJ, West DWD, Little JP, Cochran AJR, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.PubMedCrossRefGoogle Scholar
  133. 133.
    Schott J, McCully K, Rutherford OM. The role of metabolites in strength training. Eur J Appl Physiol Occup Physiol. 1995;71(4):337–41.PubMedCrossRefGoogle Scholar
  134. 134.
    Taylor NF, Dodd KJ, Damiano DL. Progressive resistance exercise in physical therapy: a summary of systematic reviews. Phys Ther. 2005;85(11):1208–23.PubMedGoogle Scholar
  135. 135.
    Kreamer WJ, Kent A, Enzo C, Dudley GA, Dooly C, Feingenbaum MS. Progression models in resistance training for healthy adults. Med Sci Sport Exerc. 2009;41(3):687–708.CrossRefGoogle Scholar
  136. 136.
    Rozand V, Lebon F, Stapley PJ, Papaxanthis C, Lepers R. A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behav Brain Res. 2016;297:67–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Armin H. Paravlic
    • 1
  • Maamer Slimani
    • 2
  • David Tod
    • 3
  • Uros Marusic
    • 1
    • 4
  • Zoran Milanovic
    • 1
    • 5
  • Rado Pisot
    • 1
  1. 1.Science and Research Centre, Institute for Kinesiology ResearchUniversity of PrimorskaKoperSlovenia
  2. 2.Research Laboratory “Sports Performance Optimization”National Center of Medicine and Science in Sports (CNMSS)TunisTunisia
  3. 3.School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
  4. 4.Department of Health SciencesAlma Mater Europaea – ECMMariborSlovenia
  5. 5.Faculty of Sport and Physical EducationUniversity of NišNišSerbia

Personalised recommendations