Skip to main content
Log in

Authors’ Reply to Cross et al.: Comment on: “The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis”

  • Letter to the Editor
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cross MR, Samozino P, Brown SR, Lahti J, Jimenez-Reyes P, Morin J-B. Comment on: “The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis”. Sports Med. 2018. https://doi.org/10.1007/s40279-018-01038-w.

    Article  Google Scholar 

  2. Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martínez-Rodríguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(99):2143–65. https://doi.org/10.1007/s40279-018-0947-8.

    Article  PubMed  Google Scholar 

  3. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harris JD, Quatman CE, Manring M, Siston RA, Flanigan DC. How to write a systematic review. Am J Sports Med. 2014;42(11):2761–8.

    Article  PubMed  Google Scholar 

  5. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.

    Article  Google Scholar 

  7. DiSilvestro KJ, Tjoumakaris FP, Maltenfort MG, Spindler KP, Freedman KB. Systematic reviews in sports medicine. Am J Sports Med. 2016;44(2):533–8.

    Article  PubMed  Google Scholar 

  8. Manchikanti L, Datta S, Smith HS, Hirsch JA. Evidence-based medicine, systematic reviews, and guidelines in interventional pain management: part 6. Systematic reviews and meta-analyses of observational studies. Pain Physician. 2009;12(5):819–50.

    PubMed  Google Scholar 

  9. Knobloch K, Yoon U, Vogt PM. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J Craniomaxillofac Surg. 2011;39(2):91–2.

    Article  PubMed  Google Scholar 

  10. Cross MR, Lahti J, Brown SR, Chedati M, Jimenez-Reyes P, Samozino P, et al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018;13(4):e0195477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–58.

    Article  CAS  PubMed  Google Scholar 

  12. Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381–400.

    Article  PubMed  Google Scholar 

  13. Hrysomallis C. The effectiveness of resisted movement training on sprinting and jumping performance. J Strength Cond Res. 2012;26(1):299–306.

    Article  PubMed  Google Scholar 

  14. Martinez-Valencia MA, Romero-Arenas S, Elvira JLL, Gonzalez-Rave JM, Navarro-Valdivielso F, Alcaraz PE. Effects of sled towing on peak force, the rate of force development and sprint performance during the acceleration phase. J Hum Kinet. 2015;46(1):139–48.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Monte A, Nardello F, Zamparo P. Sled towing: the optimal overload for peak power production. Int J Sports Physiol Perform. 2017;12(8):1052–8.

    Article  PubMed  Google Scholar 

  16. Cronin J, Hansen KT. Resisted sprint training for the acceleration phase of sprinting. Strength Cond J. 2006;28(4):42.

    Article  Google Scholar 

  17. Young W, Benton D, Duthie G, Pryor J. Resistance training for short sprints and maximum-speed sprints. Strength Cond J. 2001;23(2):7–13.

    Article  Google Scholar 

  18. Sheppard JM. Improving the sprint start with strength and conditioning exercises. Mod Athlete Coach. 2004;42(1):18–23.

    Google Scholar 

  19. Alcaraz PE, Palao JM, Elvira JLL, Linthorne NP. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res. 2008;22(3):890–7.

    Article  PubMed  Google Scholar 

  20. Sale DG. Neural adaptation to strength training. Strength Power in Sport. 2003;15:281–314.

    Article  Google Scholar 

  21. Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359–68.

    Article  CAS  PubMed  Google Scholar 

  22. Delecluse C. Influence of strength training on sprint running performance. Sports Med. 1997;24(3):147–56.

    Article  CAS  PubMed  Google Scholar 

  23. Delecluse C, Van HC, Willems E, Van ML, Diels R, Goris M. Influence of high-resistance and high-velocity training on sprint performance. Med Sci Sports Exerc. 1995;27(8):1203–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mero A, Komi PV. EMG, force, and power analysis of sprint-specific strength exercises. J Appl Biomech. 1994;10(1):1–13.

    Article  Google Scholar 

  25. Lockie RG, Murphy AJ, Spinks CD. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J Strength Cond Res. 2003;17(4):760–7.

    PubMed  Google Scholar 

  26. Cronin JB, Hansen K, Kawamori N, McNair P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008;7(2):160–72.

    Article  PubMed  Google Scholar 

  27. Alcaraz PE, Palao JM, Elvira JL. Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res. 2009;23(2):480–5.

    Article  PubMed  Google Scholar 

  28. Alexander RM. Mechanics of skeleton and tendons. Handbook of physiology—the nervous system. Am Physiol Sac. 1981;2:17–42.

    Google Scholar 

  29. Mero A, Komi P, Gregor R. Biomechanics of sprint running. A review. Sports Med. 1992;13(6):376–92.

    Article  CAS  PubMed  Google Scholar 

  30. Mero A, Komi PV. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol Occup Physiol. 1986;55(5):553–61.

    Article  CAS  PubMed  Google Scholar 

  31. Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session. J Sports Sci. 2018;36(12):1392–401.

    Article  PubMed  Google Scholar 

  32. Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104–10.

    Article  PubMed  Google Scholar 

  33. Rabita G, Dorel S, Slawinski J, Saez-de-Villarreal E, Couturier A, Samozino P, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583–94.

    Article  CAS  PubMed  Google Scholar 

  34. van Schenau GJI, de Koning JJ, de Groot G. Optimisation of sprinting performance in running, cycling and speed skating. Sports Med. 1994;17(4):259–75.

    Article  Google Scholar 

  35. Colyer SL, Nagahara R, Salo AI. Kinetic demands of sprinting shift across the acceleration phase: novel analysis of entire force waveforms. Scand J Med Sci Sports. 2018;28(7):1784–92.

    Article  CAS  PubMed  Google Scholar 

  36. Weyand PG, Sandell RF, Prime DNL, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108(4):950–61.

    Article  PubMed  Google Scholar 

  37. Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):1991–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hunter JP, Marshall RN, McNair P. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31–43.

    Article  PubMed  Google Scholar 

  39. Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):1680–8.

    Article  PubMed  Google Scholar 

  40. Dalleau G, Belli A, Bourdin M, Lacour J-R. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol. 1998;77(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  41. DeWeese BH, Bellon C, Magrum E, Taber CB, Suchomel TJ. Strengthening the springs: improving sprint performance via strength training. Track Tech. 2016;9(3):8–20.

    Google Scholar 

  42. Voigt M, Bojsen-Møller F, Simonsen EB, Dyhre-Poulsen P. The influence of tendon Youngs modulus, dimensions and instantaneous moment arms on the efficiency of human movement. J Biomech. 1995;28(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  43. Colyer SL, Stokes KA, Bilzon JL, Holdcroft D, Salo AI. Training-related changes in force–power profiles: implications for the skeleton start. Int J Sports Physiol Perform. 2018;13(4):412–9.

    Article  PubMed  Google Scholar 

  44. Cross MR, Samozino P, Brown SR, Morin J-B. A comparison between the force–velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods. Eur J Appl Physiol. 2018;118(3):563–71.

    Article  CAS  PubMed  Google Scholar 

  45. JanjiC NJ, Kapor DV, Doder DV, Doder RŽ, SaviC BV. Model for the determination of instantaneous values of the velocity, instantaneous, and average acceleration for 100-m sprinters. J Strength Cond Res. 2014;28(12):3432–9.

    Article  PubMed  Google Scholar 

  46. Alcaraz PE, Elvira JLL, Palao JM. Kinematic, strength, and stiffness adaptations after a short- term sled towing training in athletes. Scand J Med Sci Sports. 2014;24(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  47. Spinks CD, Murphy AJ, Spinks WL, Lockie RG. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J Strength Cond Res. 2007;21(1):77–85.

    Article  PubMed  Google Scholar 

  48. Cormack SJ, Mooney MG, Morgan W, McGuigan MR. Influence of neuromuscular fatigue on accelerometer load in elite Australian football players. Int J Sports Physiol Perform. 2013;8(4):373–8.

    Article  PubMed  Google Scholar 

  49. Lehnert M, Croix MDS, Xaverova Z, Botek M, Varekova R, Zaatar A, et al. Changes in injury risk mechanisms after soccer-specific fatigue in male youth soccer players. J Hum Kinet. 2018;62(1):33–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. Alcaraz.

Ethics declarations

Funding

No funding was received to assist in the preparation of this letter.

Conflicts of interest

Pedro Alcaraz, Jorge Carlos-Vivas, Bruno Oponjuru and Alejandro Martínez-Rodríguez declare they have no conflicts of interest relevant to the content of this letter.

Additional information

This reply request to the letter available at: https://doi.org/10.1007/s40279-018-0947-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcaraz, P.E., Carlos-Vivas, J., Oponjuru, B.O. et al. Authors’ Reply to Cross et al.: Comment on: “The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis”. Sports Med 49, 353–356 (2019). https://doi.org/10.1007/s40279-018-01037-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-01037-x

Navigation