Skip to main content
Log in

State of the Art Management of Acute Vaso-occlusive Pain in Sickle Cell Disease

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Acute vaso-occlusive crisis (VOC) is a hallmark of sickle cell disease (SCD). Multiple complex pathophysiological processes can result in pain during a VOC. Despite significant improvements in the understanding and management of SCD, little progress has been made in the management of pain in SCD, although new treatments are being explored. Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) remain the mainstay of treatment of VOC pain, but new classes of drugs are being tested to prevent and treat acute pain. Advancements in the understanding of the pathophysiology of SCD and pain and the pharmacogenomics of opioids have yet to be effectively utilized in the management of VOC. Opioid tolerance and opioid-induced hyperalgesia are significant problems associated with the long-term use of opioids, and better strategies for chronic pain therapy are needed. This report reviews the mechanisms of pain associated with acute VOC, describes the current management of VOC, and describes some of the new therapies under evaluation for the management of acute VOC in SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390(10091):311–23.

  2. Browne P, Shalev O, Hebbel RP. The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Free Radical Biol Med. 1998;24(6):1040–8.

    Article  CAS  Google Scholar 

  3. Telen MJ. It really IS the red cell. Blood. 2008;112(3):459–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ballas SK, Lusardi M. Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am J Hematol. 2005;79(1):17–25.

    Article  PubMed  Google Scholar 

  5. Jacob E, Miaskowski C, Savedra M, Beyer JE, Treadwell M, Styles L. Changes in intensity, location, and quality of vaso-occlusive pain in children with sickle cell disease. Pain. 2003;102(1–2):187–93.

    Article  PubMed  Google Scholar 

  6. Smith WR, Penberthy LT, Bovbjerg VE, McClish DK, Roberts JD, Dahman B, et al. Daily assessment of pain in adults with sickle cell disease. Ann Intern Med. 2008;148(2):94–101.

    Article  PubMed  Google Scholar 

  7. Ballas SK, Gupta K, Adams-Graves P. Sickle cell pain: a critical reappraisal. Blood. 2012;120(18):3647–56.

    Article  CAS  PubMed  Google Scholar 

  8. Sogutlu A, Levenson JL, McClish DK, Rosef SD, Smith WR. Somatic symptom burden in adults with sickle cell disease predicts pain, depression, anxiety, health care utilization, and quality of life: the PiSCES project. Psychosomatics. 2011;52(3):272–9.

    Article  PubMed  Google Scholar 

  9. Kaul DK, Finnegan E, Barabino GA. Sickle red cell-endothelium interactions. Microcirculation (New York, NY: 1994). 2009;16(1):97–111.

    Article  Google Scholar 

  10. Matsui NM, Borsig L, Rosen SD, Yaghmai M, Varki A, Embury SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 2001;98(6):1955–62.

    Article  CAS  PubMed  Google Scholar 

  11. Trinh-Trang-Tan MM, Vilela-Lamego C, Picot J, Wautier MP, Cartron JP. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium. Haematologica. 2010;95(5):730–7.

    Article  CAS  PubMed  Google Scholar 

  12. El Nemer W, Gauthier E, Wautier MP, Rahuel C, Gane P, Galacteros F, et al. Role of Lu/BCAM in abnormal adhesion of sickle red blood cells to vascular endothelium. Transfusion clinique et biologique: journal de la Societe francaise de transfusion sanguine. 2008;15(1–2):29–33.

    Article  Google Scholar 

  13. Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med. 1997;337(22):1584–90.

    Article  CAS  PubMed  Google Scholar 

  14. Hebbel RP, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation (New York, NY: 1994). 2004;11(2):129–51.

    Article  CAS  Google Scholar 

  15. Lum AF, Wun T, Staunton D, Simon SI. Inflammatory potential of neutrophils detected in sickle cell disease. Am J Hematol. 2004;76(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  16. Fadlon E, Vordermeier S, Pearson TC, Mire-Sluis AR, Dumonde DC, Phillips J, et al. Blood polymorphonuclear leukocytes from the majority of sickle cell patients in the crisis phase of the disease show enhanced adhesion to vascular endothelium and increased expression of CD64. Blood. 1998;91(1):266–74.

    CAS  PubMed  Google Scholar 

  17. Frenette PS. Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation (New York, NY: 1994). 2004;11(2):167–77.

    Article  CAS  Google Scholar 

  18. Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Investig. 2000;106(3):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci USA. 2002;99(5):3047–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ataga KI, Key NS. Hypercoagulability in sickle cell disease: new approaches to an old problem. Hematol Am Soc Hematol Educ Progr. 2007;2007(1):91–6.

  21. Telen MJ. Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. Blood. 2016;127(7):810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hillery CA, Kerstein PC, Vilceanu D, Barabas ME, Retherford D, Brandow AM, et al. Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease. Blood. 2011;118(12):3376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohli DR, Li Y, Khasabov SG, Gupta P, Kehl LJ, Ericson ME, et al. Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood. 2010;116(3):456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ballas SK. Pathophysiology and principles of management of the many faces of the acute vaso-occlusive crisis in patients with sickle cell disease. Eur J Haematol. 2015;95(2):113–23.

    Article  PubMed  Google Scholar 

  25. Cousins MJ, John J. Bonica distinguished lecture. Acute pain and the injury response: immediate and prolonged effects. Reg Anesth. 1989;14(4):162–79.

    CAS  PubMed  Google Scholar 

  26. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang ZJ, Wilkie DJ, Molokie R. Neurobiological mechanisms of pain in sickle cell disease. Hematol Am Soc Hematol Educ Progr. 2010;2010:403–8.

    Google Scholar 

  28. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    Article  PubMed  Google Scholar 

  29. Woolf CJ. Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology. 2007;106(4):864–7.

    Article  PubMed  Google Scholar 

  30. Darbari DS, Hampson JP, Ichesco E, Kadom N, Vezina G, Evangelou I, et al. Frequency of hospitalizations for pain and association with altered brain network connectivity in sickle cell disease. J Pain. 2015;16(11):1077–86.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zempsky WT, Stevens MC, Santanelli JP, Gaynor AM, Khadka S. altered functional connectivity in sickle cell disease exists at rest and during acute pain challenge. Clin J Pain. 2017. doi:10.1097/AJP.0000000000000492.

  32. Jensen KB, Berna C, Loggia ML, Wasan AD, Edwards RR, Gollub RL. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain. Neurosci Lett. 2012;520(2):156–64.

    Article  CAS  PubMed  Google Scholar 

  33. Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K. Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol. 2012;156(4):535–44.

    Article  CAS  PubMed  Google Scholar 

  34. Hassell KL. Population estimates of sickle cell disease in the US. Am J Prev Med. 2010;38(4 Suppl):S512–21.

    Article  PubMed  Google Scholar 

  35. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115(17):3447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brookoff D, Polomano R. Treating sickle cell pain like cancer pain. Ann Intern Med. 1992;116(5):364–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jacobson SJ, Kopecky EA, Joshi P, Babul N. Randomised trial of oral morphine for painful episodes of sickle-cell disease in children. Lancet. 1997;350(9088):1358–61.

    Article  CAS  PubMed  Google Scholar 

  38. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.

    Article  PubMed  CAS  Google Scholar 

  39. Hardwick WE Jr, Givens TG, Monroe KW, King WD, Lawley D. Effect of ketorolac in pediatric sickle cell vaso-occlusive pain crisis. Pediatr Emerg Care. 1999;15(3):179–82.

    Article  PubMed  Google Scholar 

  40. Udezue E, Herrera E. Pain management in adult acute sickle cell pain crisis: a viewpoint. West Afr J Med. 2007;26(3):179–82.

    CAS  PubMed  Google Scholar 

  41. van Beers EJ, van Tuijn CF, Nieuwkerk PT, Friederich PW, Vranken JH, Biemond BJ. Patient-controlled analgesia versus continuous infusion of morphine during vaso-occlusive crisis in sickle cell disease, a randomized controlled trial. Am J Hematol. 2007;82(11):955–60.

    Article  PubMed  CAS  Google Scholar 

  42. Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: a behavioral scale for scoring postoperative pain in young children. Pediatr Nurs. 1997;23(3):293–7.

    CAS  PubMed  Google Scholar 

  43. Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B. The faces pain scale-revised: toward a common metric in pediatric pain measurement. Pain. 2001;93(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  44. von Baeyer CL, Spagrud LJ, McCormick JC, Choo E, Neville K, Connelly MA. Three new datasets supporting use of the Numerical Rating Scale (NRS-11) for children’s self-reports of pain intensity. Pain. 2009;143(3):223–7.

    Article  Google Scholar 

  45. Wang CJ, Kavanagh PL, Little AA, Holliman JB, Sprinz PG. Quality-of-care indicators for children with sickle cell disease. Pediatrics. 2011;128(3):484–93.

    PubMed  Google Scholar 

  46. Carden MA, Fay M, Sakurai Y, McFarland B, Blanche S, Diprete C, et al. Normal Saline is Associated with increased sickle red cell stiffness and prolonged transit times in a microfluidic model of the capillary system. Microcirculation 2017;24(5):e12353. doi:10.1111/micc.12353.

  47. Okomo U, Meremikwu MM. Fluid replacement therapy for acute episodes of pain in people with sickle cell disease. Cochrane Database Syst Rev. 2015;12(3):Cd005406.

    Google Scholar 

  48. Glassberg J. Evidence-based management of sickle cell disease in the emergency department. Emerg Med Pract. 2011;13(8):1–20.

    PubMed  Google Scholar 

  49. Vijenthira A, Stinson J, Friedman J, Palozzi L, Taddio A, Scolnik D, et al. Benchmarking pain outcomes for children with sickle cell disease hospitalized in a tertiary referral pediatric hospital. Pain Res Manag. 2012;17(4):291–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ender KL, Krajewski JA, Babineau J, Tresgallo M, Schechter W, Saroyan JM, et al. Use of a clinical pathway to improve the acute management of vaso-occlusive crisis pain in pediatric sickle cell disease. Pediatr Blood Cancer. 2014;61(4):693–6.

    Article  PubMed  Google Scholar 

  51. Rees DC, Olujohungbe AD, Parker NE, Stephens AD, Telfer P, Wright J. Guidelines for the management of the acute painful crisis in sickle cell disease. Br J Haematol. 2003;120(5):744–52.

    Article  PubMed  Google Scholar 

  52. Goodman E. Use of ketorolac in sickle-cell disease and vaso-occlusive crisis. Lancet (London, England). 1991;338(8767):641–2.

    Article  CAS  Google Scholar 

  53. Perlin E, Finke H, Castro O, Rana S, Pittman J, Burt R, et al. Enhancement of pain control with ketorolac tromethamine in patients with sickle cell vaso-occlusive crisis. Am J Hematol. 1994;46(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  54. Darbari DS, Neely M, van den Anker J, Rana S. Increased clearance of morphine in sickle cell disease: implications for pain management. J Pain. 2011;12(5):531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Etteldorf JN, Smith JD, Tuttle AH, Diggs LW. Renal hemodynamic studies in adults with sickle cell anemia. Am J Med. 1955;18(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  56. Gremse DA, Fillingim E, Hoff CJ, Wells DJ, Boerth RC. Hepatic function as assessed by lidocaine metabolism in sickle cell disease. J Pediatr. 1998;132(6):989–93.

    Article  CAS  PubMed  Google Scholar 

  57. Nath KA, Katusic ZS, Gladwin MT. The perfusion paradox and vascular instability in sickle cell disease. Microcirculation (New York, NY: 1994). 2004;11(2):179–93.

    Article  CAS  Google Scholar 

  58. Tanabe P, Martinovich Z, Buckley B, Schmelzer A, Paice JA. Safety of an ED high-dose opioid protocol for sickle cell disease pain. JEN. 2015;41(3):227–35.

  59. Mathias MD, McCavit TL. Timing of opioid administration as a quality indicator for pain crises in sickle cell disease. Pediatrics. 2015;135(3):475–82.

    Article  PubMed  Google Scholar 

  60. Hoffman HG, Richards TL, Van Oostrom T, Coda BA, Jensen MP, Blough DK, et al. The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesth Analg. 2007;105(6):1776–83.

    Article  CAS  PubMed  Google Scholar 

  61. Gammal RS, Crews KR, Haidar CE, Hoffman JM, Baker DK, Barker PJ, et al. Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics. 2016;138(1):e20153479.

  62. Campos J, Lobo C, Queiroz AM, do Nascimento EM, Lima CB, Cardoso G, et al. Treatment of the acute sickle cell vaso-occlusive crisis in the Emergency Department: a Brazilian method of switching from intravenous to oral morphine. Eur J Haematol. 2014;93(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez ER, Bahal N, Hansen LA, Ware D, Bull DS, Ornato JP, et al. Intermittent injection vs patient-controlled analgesia for sickle cell crisis pain. Comparison in patients in the emergency department. Arch Intern Med. 1991;151(7):1373–8.

    Article  CAS  PubMed  Google Scholar 

  64. Holbrook CT. Patient-controlled analgesia pain management for children with sickle cell disease. J Assoc Acad Minor Phys. 1990;1(3):93–6.

    CAS  PubMed  Google Scholar 

  65. Dampier CD, Smith WR, Wager CG, Kim HY, Bell MC, Miller ST, et al. IMPROVE trial: a randomized controlled trial of patient-controlled analgesia for sickle cell painful episodes: rationale, design challenges, initial experience, and recommendations for future studies. Clin Trials (London, England). 2013;10(2):319–31.

    Article  Google Scholar 

  66. Trentadue NO, Kachoyeanos MK, Lea G. A comparison of two regimens of patient-controlled analgesia for children with sickle cell disease. J Pediatr Nurs. 1998;13(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  67. De Franceschi L, Mura P, Schweiger V, Vencato E, Quaglia FM, Delmonte L, et al. Fentanyl buccal tablet: a new breakthrough pain medication in early management of severe vaso-occlusive crisis in sickle cell disease. Pain Pract. 2016;16(6):680–7.

    Article  PubMed  Google Scholar 

  68. Foster D, Upton R, Christrup L, Popper L. Pharmacokinetics and pharmacodynamics of intranasal versus intravenous fentanyl in patients with pain after oral surgery. Ann Pharmacother. 2008;42(10):1380–7.

    Article  CAS  PubMed  Google Scholar 

  69. Kavanagh PL, Sprinz PG, Wolfgang TL, Killius K, Champigny M, Sobota A, et al. Improving the management of vaso-occlusive episodes in the pediatric emergency department. Pediatrics. 2015;136(4):e1016–25.

    Article  PubMed  Google Scholar 

  70. Fein DM, Avner JR, Scharbach K, Manwani D, Khine H. Intranasal fentanyl for initial treatment of vaso-occlusive crisis in sickle cell disease. Pediatr Blood Cancer. 2017;64(6):e26332.

  71. de Franceschi L, Finco G, Vassanelli A, Zaia B, Ischia S, Corrocher R. A pilot study on the efficacy of ketorolac plus tramadol infusion combined with erythrocytapheresis in the management of acute severe vaso-occlusive crises and sickle cell pain. Haematologica. 2004;89(11):1389–91.

    PubMed  Google Scholar 

  72. Erhan E, Inal MT, Aydinok Y, Balkan C, Yegul I. Tramadol infusion for the pain management in sickle cell disease: a case report. Paediatr Anaesth. 2007;17(1):84–6.

    Article  PubMed  Google Scholar 

  73. Galeotti C, Courtois E, Carbajal R. How French paediatric emergency departments manage painful vaso-occlusive episodes in sickle cell disease patients. Acta Paediatrica (Oslo, Norway: 1992). 2014;103(12):e548–54.

    Article  CAS  Google Scholar 

  74. Buchanan ID, Woodward M, Reed GW. Opioid selection during sickle cell pain crisis and its impact on the development of acute chest syndrome. Pediatr Blood Cancer. 2005;45(5):716–24.

    Article  PubMed  Google Scholar 

  75. Lewing K, Britton K, DeBaun M, Woods G. The impact of parenteral narcotic choice in the development of acute chest syndrome in sickle cell disease. J Pediatr Hematol Oncol. 2011;33(4):255–60.

    Article  PubMed  Google Scholar 

  76. Koppert W, Sittl R, Scheuber K, Alsheimer M, Schmelz M, Schuttler J. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99(1):152–9.

    Article  CAS  PubMed  Google Scholar 

  77. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain. 1995;62(3):259–74.

    Article  CAS  PubMed  Google Scholar 

  78. Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg. 2004;99(2):482–95.

    Article  CAS  PubMed  Google Scholar 

  79. Uprety D, Baber A, Foy M. Ketamine infusion for sickle cell pain crisis refractory to opioids: a case report and review of literature. Ann Hematol. 2014;93(5):769–71.

    Article  PubMed  Google Scholar 

  80. Jennings CA, Bobb BT, Noreika DM, Coyne PJ. Oral ketamine for sickle cell crisis pain refractory to opioids. J Pain Palliat Care Pharmacother. 2013;27(2):150–4.

    Article  PubMed  Google Scholar 

  81. Tawfic QA, Faris AS, Kausalya R. The role of a low-dose ketamine-midazolam regimen in the management of severe painful crisis in patients with sickle cell disease. J Pain Symptom Manage. 2014;47(2):334–40.

    Article  PubMed  Google Scholar 

  82. Zempsky WT, Loiselle KA, Corsi JM, Hagstrom JN. Use of low-dose ketamine infusion for pediatric patients with sickle cell disease-related pain: a case series. Clin J Pain. 2010;26(2):163–7.

    Article  PubMed  Google Scholar 

  83. Wilkie DJ, Molokie R, Boyd-Seal D, Suarez ML, Kim YO, Zong S, et al. Patient-reported outcomes: descriptors of nociceptive and neuropathic pain and barriers to effective pain management in adult outpatients with sickle cell disease. J Natl Med Assoc. 2010;102(1):18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA. 1998;280(21):1831–6.

    Article  CAS  PubMed  Google Scholar 

  85. Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA. 1998;280(21):1837–42.

    Article  CAS  PubMed  Google Scholar 

  86. van de Vusse AC, Stomp-van den Berg SG, Kessels AH, Weber WE. Randomised controlled trial of gabapentin in Complex Regional Pain Syndrome type 1 [ISRCTN84121379]. BMC Neurol. 2004;29(4):13.

    Article  CAS  Google Scholar 

  87. Ho KY, Gan TJ, Habib AS. Gabapentin and postoperative pain—a systematic review of randomized controlled trials. Pain. 2006;126(1–3):91–101.

    Article  CAS  PubMed  Google Scholar 

  88. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352(13):1324–34.

    Article  CAS  PubMed  Google Scholar 

  89. Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, et al. Inhibition of neuronal Ca(2+) influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology. 2002;42(2):229–36.

    Article  CAS  PubMed  Google Scholar 

  90. Taylor CP. The biology and pharmacology of calcium channel alpha2-delta proteins Pfizer Satellite Symposium to the 2003 Society for Neuroscience Meeting. Sheraton New Orleans Hotel, New Orleans, LA November 10, 2003. CNS Drug Rev. 2004;10(2):183–8.

    Article  PubMed  Google Scholar 

  91. Nottage KA, Hankins JS, Faughnan LG, James DM, Richardson J, Christensen R, et al. Addressing challenges of clinical trials in acute pain: the pain management of vaso-occlusive crisis in children and young adults with sickle cell disease study. Clin Trials (London, England). 2016;13(4):409–16.

    Article  Google Scholar 

  92. Albrecht E, Kirkham KR, Liu SS, Brull R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: a meta-analysis. Anaesthesia. 2013;68(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  93. De Oliveira GS Jr., Castro-Alves LJ, Khan JH, McCarthy RJ. Perioperative systemic magnesium to minimize postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(1):178–90.

    Article  PubMed  CAS  Google Scholar 

  94. Brousseau DC, Scott JP, Hillery CA, Panepinto JA. The effect of magnesium on length of stay for pediatric sickle cell pain crisis. Acad Emerg Med. 2004;11(9):968–72.

    Article  PubMed  Google Scholar 

  95. Goldman RD, Mounstephen W, Kirby-Allen M, Friedman JN. Intravenous magnesium sulfate for vaso-occlusive episodes in sickle cell disease. Pediatrics. 2013;132(6):e1634–41.

    Article  PubMed  Google Scholar 

  96. Brousseau DC, Scott JP, Badaki-Makun O, Darbari DS, Chumpitazi CE, Airewele GE, et al. A multicenter randomized controlled trial of intravenous magnesium for sickle cell pain crisis in children. Blood. 2015;126(14):1651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Telen MJ, Wun T, McCavit TL, De Castro LM, Krishnamurti L, Lanzkron S, et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125(17):2656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Telen MJ, Batchvarova M, Shan S, Bovee-Geurts PH, Zennadi R, Leitgeb A, et al. Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion. Br J Haematol. 2016;175(5):935–48.

    Article  CAS  PubMed  Google Scholar 

  99. Hankins JS, Ware RE, Rogers ZR, Wynn LW, Lane PA, Scott JP, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood. 2005;106(7):2269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoppe C, Vichinsky E, Quirolo K, van Warmerdam J, Allen K, Styles L. Use of hydroxyurea in children ages 2 to 5 years with sickle cell disease. J Pediatr Hematol Oncol. 2000;22(4):330–4.

    Article  CAS  PubMed  Google Scholar 

  101. Jayabose S, Tugal O, Sandoval C, Patel P, Puder D, Lin T, et al. Clinical and hematologic effects of hydroxyurea in children with sickle cell anemia. J Pediatr. 1996;129(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  102. Scott JP, Hillery CA, Brown ER, Misiewicz V, Labotka RJ. Hydroxyurea therapy in children severely affected with sickle cell disease. J Pediatr. 1996;128(6):820–8.

    Article  CAS  PubMed  Google Scholar 

  103. Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377(9778):1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645–51.

    Article  CAS  PubMed  Google Scholar 

  105. Lobo CL, Pinto JF, Nascimento EM, Moura PG, Cardoso GP, Hankins JS. The effect of hydroxcarbamide therapy on survival of children with sickle cell disease. Br J Haematol. 2013;161(6):852–60.

    Article  CAS  PubMed  Google Scholar 

  106. Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood. 2010;115(12):2354–63.

    Article  CAS  PubMed  Google Scholar 

  107. Miller ST, Wright E, Abboud M, Berman B, Files B, Scher CD, et al. Impact of chronic transfusion on incidence of pain and acute chest syndrome during the Stroke Prevention Trial (STOP) in sickle-cell anemia. J Pediatr. 2001;139(6):785–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ballas SK, Lyon D. Safety and efficacy of blood exchange transfusion for priapism complicating sickle cell disease. J Clin Apheresis. 2016;31(1):5–10.

    Article  PubMed  Google Scholar 

  109. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429–39.

    Article  CAS  PubMed  Google Scholar 

  110. Heeney MM, Hoppe CC, Abboud MR, Inusa B, Kanter J, Ogutu B, et al. A multinational trial of prasugrel for sickle cell vaso-occlusive events. N Engl J Med. 2016;374(7):625–35.

    Article  CAS  PubMed  Google Scholar 

  111. Hoppe C, Jacob E, Styles L, Kuypers F, Larkin S, Vichinsky E. Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: a pilot efficacy trial. Br J Haematol. 2017;177(4):620–9.

  112. Oksenberg D, Dufu K, Patel MP, Chuang C, Li Z, Xu Q, et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br J Haematol. 2016;175(1):141–53.

    Article  CAS  PubMed  Google Scholar 

  113. Peters-Lawrence MH, Bell MC, Hsu LL, Osunkwo I, Seaman P, Blackwood M, et al. Clinical trial implementation and recruitment: lessons learned from the early closure of a randomized clinical trial. Contemp Clin Trials. 2012;33(2):291–7.

    Article  PubMed  Google Scholar 

  114. Styles L, Wager CG, Labotka RJ, Smith-Whitley K, Thompson AA, Lane PA, et al. Refining the value of secretory phospholipase A2 as a predictor of acute chest syndrome in sickle cell disease: results of a feasibility study (PROACTIVE). Br J Haematol. 2012;157(5):627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Po C, Colombatti R, Cirigliano A, Da Dalt L, Agosto C, Benini F, et al. The management of sickle cell pain in the emergency department: a priority for health systems. Clin J Pain. 2013;29(1):60–3.

    Article  PubMed  Google Scholar 

  116. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lazio MP, Costello HH, Courtney DM, Martinovich Z, Myers R, Zosel A, et al. A comparison of analgesic management for emergency department patients with sickle cell disease and renal colic. Clin J Pain. 2010;26(3):199–205.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Brandon Stelter, Sr. Graphic Designer, St. Jude Biomedical Communications, for preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doralina L. Anghelescu.

Ethics declarations

Conflict of interest

Latika Puri, Jane S. Hankins, and Doralina L. Anghelescu have no conflicts of interest. Kerri A. Nottage is employed by Janssen Research and Development, Raritan, NJ, USA.

Funding

No funding sources were used.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, L., Nottage, K.A., Hankins, J.S. et al. State of the Art Management of Acute Vaso-occlusive Pain in Sickle Cell Disease. Pediatr Drugs 20, 29–42 (2018). https://doi.org/10.1007/s40272-017-0263-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-017-0263-z

Navigation