Skip to main content
Log in

Be aware of the risk of drug-induced kidney stones and take appropriate steps to prevent or treat their occurrence

  • Drug Reactions and Interactions
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Drug-induced kidney stones can form when poorly soluble drugs with high levels of renal excretion (e.g. protease inhibitors and sulfonamides) crystallise in the urine, as well as when drugs with metabolic effects (e.g. calcium + vitamin D supplements and carbonic anhydrase inhibitors) promote the crystallisation of metabolic compounds. Methods such as infrared spectroscopy and X-ray diffraction should be used to determine whether a drug or its metabolites are present in stones or crystals, while a careful clinical inquiry is necessary to successfully distinguish between common calculi and metabolically-induced stones. Kidney stones can often be prevented or treated through the modification of risk factors, such as urine output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daudon M, Frochot V, Bazin D, et al. Drug-induced kidney stones and crystalline nephropathy: pathophysiology, prevention and treatment. Drugs. 2018;78(2):163–201.

    Article  CAS  PubMed  Google Scholar 

  2. Couzigou C, Daudon M, Meynard JL, et al. Urolithiasis in HIV-positive patients treated with atazanavir. Clin Infect Dis. 2007;45(8):e105–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rockwood N, Mandalia S, Bower M, et al. Ritonavir-boosted atazanavir exposure is associated with an increased rate of renal stones compared with efavirenz, ritonavir-boosted lopinavir and ritonavir-boosted darunavir. AIDS. 2011;25(13):1671–3.

    Article  CAS  PubMed  Google Scholar 

  4. de Lastours V, De Silva EFR, Daudon M, et al. High levels of atazanavir and darunavir in urine and crystalluria in asymptomatic patients. J Antimicrob Chemother. 2013;68(8):1850–6.

    Article  CAS  PubMed  Google Scholar 

  5. Daudon M, Jungers P. Drug-induced renal calculi: epidemiology, prevention and management. Drugs. 2004;64(3):245–75.

    Article  PubMed  Google Scholar 

  6. Daudon M, Estépa L, Viard JP, et al. Indinavir crystalluria in HIV-positive patients treated with indinavir sulfate. In: Rodgers AL, Hibbert BE, Hess B, Khan SR, Preminger GM, editors. Urolithiasis 2000. Cape Town: University of Cape Town; 2000. p. 335–7.

    Google Scholar 

  7. Boubaker K, Sudre P, Bally F, et al. Changes in renal function associated with indinavir. AIDS. 1998;12(18):F249–54.

    Article  CAS  PubMed  Google Scholar 

  8. Sarcletti M, Petter A, Romani N, et al. Pyuria in patients treated with indinavir is associated with renal dysfunction. Clin Nephrol. 2000;54(4):261–70.

    CAS  PubMed  Google Scholar 

  9. Daudon M, Estépa L, Viard JP. Urinary stones in HIV-1-positive patients treated with indinavir. Lancet. 1997;349(9061):1294–5.

    Article  CAS  PubMed  Google Scholar 

  10. Izzedine H, Lescure FX, Bonnet F. HIV medication-based urolithiasis. Clin Kidney. 2014;7(2):121–6.

    Article  CAS  Google Scholar 

  11. Engeler DS, John H, Rentsch KM, et al. Nelfinavir urinary stones. J Urol. 2002;167(3):1384–5.

    Article  PubMed  Google Scholar 

  12. Raymond JR. Amphotericin B nephrotoxicity. Am Fam Physician. 1988;38(2):199–203.

    CAS  PubMed  Google Scholar 

  13. Asper R. Iatrogenic urinary calculi: detection and identification by X-ray diffraction. Clin Chem. 1986;24(10):767–8.

    Google Scholar 

  14. Youssef DM, Sherief LM, Sherbiny HS, et al. Prospective study of nephrolithiasis occurrence in children receiving ceftriaxone. Nephrology. 2015;21(5):432–7.

    Article  CAS  Google Scholar 

  15. Zhang Y, Ning B, Zhu H, et al. Characterizing ceftriaxone-induced urolithiasis and its associated acute kidney injury: an animal study and Chinese clinical systematic review. Int Urol Nephrol. 2016;48(7):1061–9.

    Article  CAS  PubMed  Google Scholar 

  16. Thorsteinsson SB, Bergan T, Rohwedder R. Tolerance of intravenously administered ciprofloxacin. Chemotherapy. 1988;34(3):256–60.

    Article  CAS  PubMed  Google Scholar 

  17. Thorsteinsson SB, Bergan T, Oddsdottir S, et al. Crystalluria and ciprofloxacin, influence of urinary pH and hydration. Chemotherapy. 1986;32(5):408–17.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett S, Hoffman N, Monga M. Ephedrine- and guaifenesin-induced nephrolithiasis. J Altern Complement Med. 2005;10(6):967–9.

    Article  Google Scholar 

  19. Powell T, Hsu FF, Turk J, et al. Ma-huang strikes again: ephedrine nephrolithiasis. Am J Kidney Dis. 1998;32(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gabardi S, Carter D, Martin S, et al. Recommendations for the proper use of nonprescription cough suppressants and expectorants in solid-organ transplant recipients. Prog Transplant. 2011;21(1):6–13.

    Article  PubMed  Google Scholar 

  21. Perazella MA. Crystal-induced acute renal failure. Am J Med. 1999;106(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  22. Carey RA, Beg MM, McNally CF, et al. Triamterene and renal lithiasis: a review. Clin Ther. 1984;6(3):302–9.

    CAS  PubMed  Google Scholar 

  23. Ettinger B, Oldroyd NO, Sörgel F. Triamterene nephrolithiasis. JAMA. 1980;244:2443–5.

    Article  CAS  PubMed  Google Scholar 

  24. Jick H, Dinan BJ, Hunter JR. Triamterene and renal stones. J Urol. 1982;127(2):224–5.

    Article  CAS  PubMed  Google Scholar 

  25. Fairley KF, Woo KT, Birch DF, et al. Triamterene-induced crystalluria and cylindruria: clinical and experimental studies. Clin Nephrol. 1986;26(4):169–73.

    CAS  PubMed  Google Scholar 

  26. Lynn KL, Bailey RR, Swainson CP, et al. Renal failure with potassium-sparing diuretics. NZ Med J. 1985;98(784):629–33.

    CAS  Google Scholar 

  27. Nguyen Quy D, Daudon M. Infrared and Raman spectra of calculi. Paris: Elsevier; 1997.

    Google Scholar 

  28. Izzedine H, Harris M, Perazella MA. The nephrotoxic effects of HAART. Nat Rev Nephrol. 2009;5(10):563–73.

    Article  CAS  PubMed  Google Scholar 

  29. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354:669–83.

    Article  CAS  PubMed  Google Scholar 

  30. Lappe J, Watson P, Travers-Gustafson D, et al. Effect of vitamin D and calcium supplementation on cancer incidence in older women. JAMA. 2017;317(12):1234–43.

    Article  CAS  PubMed  Google Scholar 

  31. Ferraro PM, Taylor EN, Gambaro G, et al. Vitamin D intake and the risk of incident kidney stones. J Urol. 2017;197:405–10.

    Article  CAS  PubMed  Google Scholar 

  32. Johri N, Jaeger P, Ferraro PM, et al. Vitamin D deficiency is prevalent among idiopathic stone formers, but does correction pose any risk? Urolithiasis. 2017;45:535–43.

    Article  CAS  PubMed  Google Scholar 

  33. Seidowsky A, Villain C, Vilaine E, et al. Hypercalcemia and inactive mutation of CYP24A1: case-study and literature review. Nephrol Ther. 2017;13(3):146–53.

    Article  PubMed  Google Scholar 

  34. Daudon M, Lacour B, Jungers P, et al. Urolithiasis in patients with end stage renal failure. J Urol. 1992;147(4):977–80.

    Article  CAS  PubMed  Google Scholar 

  35. Resor SR, Resor LD. Chronic acetazolamide monotherapy in the treatment of juvenile myoclonic epilepsy. Neurology. 1990;40(11):1677–81.

    Article  PubMed  Google Scholar 

  36. Daudon M. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol. 2004;98(2):31–6.

    Article  CAS  Google Scholar 

  37. Ahlstrand C, Tiselius H-G. Urine composition and stone formation during treatment with acetazolamide. Scand J Urol Nephrol. 2010;21(3):225–8.

    Article  Google Scholar 

  38. Maalouf NM. Nephrolithiasis in topiramate users. Urol Res. 2011;39(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wroe S. Zonisamide and renal calculi in patients with epilepsy: how big an issue? Curr Med Res Opin. 2007;23(8):1765–73.

    Article  CAS  PubMed  Google Scholar 

  40. Hufnagle KG, Khan SN, Penn D, et al. Renal calcifications: a complication of long-term furosemide therapy in preterm infants. Pediatrics. 1982;70(3):360–3.

    CAS  PubMed  Google Scholar 

  41. Kim Y-G, Kim B, Kim M-K, et al. Medullary nephrocalcinosis associated with long-term furosemide abuse in adults. Nephrol Dial Transplant. 2001;16(12):2303–9.

    Article  CAS  PubMed  Google Scholar 

  42. Böhles H, Gebhardt B, Beeg T, et al. Antibiotic treatment-induced tubular dysfunction as a risk factor for renal stone formation in cystic fibrosis. J Pediatr. 2002;140(1):103–9.

    Article  PubMed  Google Scholar 

  43. Terribile M, Capuano M, Cangiano G, et al. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol Dial Transplant. 2006;21(7):1870–5.

    Article  CAS  PubMed  Google Scholar 

  44. Ferraro PM, Curhan GC, Gambaro G, et al. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am J Kidney Dis. 2016;67(3):400–7.

    Article  CAS  PubMed  Google Scholar 

  45. Schaefer M, Littrell E, Khan A, et al. Estimated GFR decline following sodium phosphate enemas versus polyethylene glycol for screening colonoscopy: a retrospective cohort study. Am J Kidney Dis. 2016;67(4):609–16.

    Article  CAS  PubMed  Google Scholar 

  46. Rapado A, Traba ML, Caycho C, et al. Drug-induced renal stones: incidence, clinical expression and stone analysis. Contrib Nephrol. 1987;58:25–9.

    Article  CAS  PubMed  Google Scholar 

  47. Daudon M, Estepa L. Drug induced lithiases [in French]. Presse Med. 1998;27(14):675–83.

    CAS  PubMed  Google Scholar 

  48. Cohen-Solal F, Abdelmoula J, Hoarau MP, et al. Urinary lithiasis of medical origin [in French]. Therapie. 2001;56(6):743–50.

    CAS  PubMed  Google Scholar 

  49. Daudon M, Protat MF, Reveillaud RJ. Detection and diagnosis of drug-induced urinary calculi [in French]. Ann Biol Clin. 1983;41(4):239–49.

    CAS  Google Scholar 

  50. Daudon M, Réveillaud RJ. Drug nephrolithiasis: an unrecognized and underestimated pathology. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, editors. Urolithiasis and related clinical research. New York: Plenum; 1985. p. 371–4.

    Chapter  Google Scholar 

  51. Matlaga BR, Shah OD, Assimos DG. Drug-induced urinary calculi. Rev Urol. 2003;5(4):227–31.

    PubMed  PubMed Central  Google Scholar 

  52. Daudon M. Drug-induced urinary calculi in 1999 [in French]. Prog Urol. 1999;9(6):1023–33.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Ethics declarations

Conflict of interest

The article was adapted from Drugs 2018;78(2)163-201 [1] by employees of Adis/Springer, who are responsible for the article content and declare no conflicts of interest.

Funding

The preparation of this review was not supported by any external funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adis Medical Writers. Be aware of the risk of drug-induced kidney stones and take appropriate steps to prevent or treat their occurrence. Drugs Ther Perspect 35, 64–70 (2019). https://doi.org/10.1007/s40267-018-0565-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-018-0565-4

Navigation