, Volume 79, Issue 10, pp 1103–1134 | Cite as

Therapeutic Options for Mucopolysaccharidoses: Current and Emerging Treatments

  • Kazuki Sawamoto
  • Molly Stapleton
  • Carlos J. Alméciga-Díaz
  • Angela J. Espejo-Mojica
  • Juan Camilo Losada
  • Diego A. Suarez
  • Shunji TomatsuEmail author
Review Article


Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000–25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood–brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.


Compliance with Ethical Standards


The following funding was used to assist with the preparation of this review article: The Carol Ann Foundation, Angelo R. Cali and Mary V. Cali Family Foundation, Inc., The Vain and Harry Fish Foundation, Inc., The Bennett Foundation, Jacob Randall Foundation, Austrian and Japanese MPS Societies, Nemours Funds, Baby and Infant in Research of Health and Development to Adolescent and Young Adult from the Japan Agency for Medical Research and Development (AMED), under Grant number JP18gk0110017, an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under Grant number P30GM114736, Pontificia Universidad Javeriana (PPTA # 8275), and COLCIENCIAS (Grant ID 120380763212—PPTA # 8352).

Conflict of interest

Kazuki Sawamoto, Molly Stapleton, Carlos J. Alméciga-Díaz, Angela J. Espejo-Mojica, Juan Camilo Losada, Diego A. Suarez, and Shunji Tomatsu contributed to this review article and had no conflicts of interest with any other party.


  1. 1.
    Neufeld E, Muenzer J. The Mucopolysaccharidoses. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic and molecular bases of inherited diseases. New York: McGraw-Hill; 2001. p. 3421–52.Google Scholar
  2. 2.
    Alméciga-Diaz C, Guevara J, Espejo A, Rodriguez A, Echeverri O, Barrera L. Therapies for mucopolysaccharidoses: an overview. In: Tomatsu S, Lavery C, Giugliani R, Harmatz P, Scarpa M, Węgrzyn G, et al., editors. Mucopolysaccharidoses update (2 volume set). Hauppauge: Nova Science Publishers, Inc.; 2018.Google Scholar
  3. 3.
    White K. Orthopedic surgical interventions in the mucopolysaccharidoses. In: Tomatsu S, Lavery C, Giugliani R, Harmatz P, Scarpa M, Węgrzyn G, et al., editors. Mucopolysaccharidoses update (2 volume set). Hauppauge: Nova Science Publishers, Inc.; 2018. p. 597–618.Google Scholar
  4. 4.
    Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology. 2011;50(Suppl 5):v49–59.Google Scholar
  5. 5.
    Noh H, Lee JI. Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Phar Ther. 2014;39(3):215–24.Google Scholar
  6. 6.
    Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science. 1968;162(3853):570–2.Google Scholar
  7. 7.
    Hobbs JR, Hugh-Jones K, Barrett AJ, Byrom N, Chambers D, Henry K, et al. Reversal of clinical features of Hurler’s disease and biochemical improvement after treatment by bone-marrow transplantation. Lancet. 1981;2(8249):709–12.Google Scholar
  8. 8.
    Moore D, Connock MJ, Wraith E, Lavery C. The prevalence of and survival in Mucopolysaccharidosis I: Hurler, Hurler–Scheie and Scheie syndromes in the UK. Orphanet J Rare Dis. 2008;3:24.Google Scholar
  9. 9.
    Aldenhoven M, Jones SA, Bonney D, Borrill RE, Coussons M, Mercer J, et al. Hematopoietic cell transplantation for mucopolysaccharidosis patients is safe and effective: results after implementation of international guidelines. Biol Blood Marrow Transplant. 2015;21(6):1106–9.Google Scholar
  10. 10.
    Ghosh A, Miller W, Orchard PJ, Jones SA, Mercer J, Church HJ, et al. Enzyme replacement therapy prior to haematopoietic stem cell transplantation in mucopolysaccharidosis type i: 10 year combined experience of 2 centres. Mol Genet Metab. 2016;117(3):373–7.Google Scholar
  11. 11.
    Lum SH, Miller WP, Jones S, Poulton K, Ogden W, Lee H, et al. Changes in the incidence, patterns and outcomes of graft failure following hematopoietic stem cell transplantation for Hurler syndrome. Bone Marrow Transplant. 2017;52(6):846–53.Google Scholar
  12. 12.
    Lum SH, Stepien KM, Ghosh A, Broomfield A, Church H, Mercer J, et al. Long term survival and cardiopulmonary outcome in children with Hurler syndrome after haematopoietic stem cell transplantation. J Inherit Metab Dis. 2017;40(3):455–60.Google Scholar
  13. 13.
    Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med. 2001;344(3):182–8.Google Scholar
  14. 14.
    Harmatz P, Whitley CB, Waber L, Pais R, Steiner R, Plecko B, et al. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux–Lamy syndrome). J Pediatr. 2004;144(5):574–80.Google Scholar
  15. 15.
    Muenzer J, Gucsavas-Calikoglu M, McCandless SE, Schuetz TJ, Kimura A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90(3):329–37.Google Scholar
  16. 16.
    Hendriksz C, Burton BK, Fleming T, Giugliani R, Harmatz P, Hughes D, et al. A multi-national, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of BMN 110 treatment for mucopolysaccharidosis IVA (Morquio syndrome type A). Mol Genet Metab. 2013;108(2):S48.Google Scholar
  17. 17.
    Sohn YB, Cho SY, Park SW, Kim SJ, Ko AR, Kwon EK, et al. Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter syndrome). Orphanet J Rare Dis. 2013;8(42):1–12.Google Scholar
  18. 18.
    Fox JE, Volpe L, Bullaro J, Kakkis ED, Sly WS. First human treatment with investigational rhGUS enzyme replacement therapy in an advanced stage MPS VII patient. Mol Genet Metab. 2015;114(2):203–8.Google Scholar
  19. 19.
    Ponder KP. Immune response hinders therapy for lysosomal storage diseases. J Clin Investig. 2008;118(8):2686–9.Google Scholar
  20. 20.
    Tomatsu S, Alméciga-Díaz CJ, Montaño AM, Yabe H, Tanaka A, Dung VC, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114(2):94–109.Google Scholar
  21. 21.
    Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products. Stem Cell Rev. 2019;15(2):166–75.Google Scholar
  22. 22.
    Schneller JL, Lee CM, Bao G, Venditti CP. Genome editing for inborn errors of metabolism: advancing towards the clinic. BMC Med. 2017;15(43):1–12.Google Scholar
  23. 23.
    Jakobkiewicz-Banecka J, Piotrowska E, Gabig-Ciminska M, Borysiewicz E, Slominska-Wojewodzka M, Narajczyk M, et al. Substrate reduction therapies for mucopolysaccharidoses. Curr Pharm Biotechnol. 2011;12(11):1860–5.Google Scholar
  24. 24.
    Simonaro CM, D’Angelo M, Haskins ME, Schuchman EH. Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and biomarkers using animal models. Pediatr Res. 2005;57(5 Pt 1):701–7.Google Scholar
  25. 25.
    Simonaro CM, Ge Y, Eliyahu E, He X, Jepsen KJ, Schuchman EH. Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc Natl Acad Sci USA. 2010;107(1):222–7.Google Scholar
  26. 26.
    Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, et al. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta. 2015;1852(5):1012–9.Google Scholar
  27. 27.
    Hennermann JB, Gokce S, Solyom A, Mengel E, Schuchman EH, Simonaro CM. Treatment with pentosan polysulphate in patients with MPS I: results from an open label, randomized, monocentric phase II study. J Inherit Metab Dis. 2016;39(6):831–7.Google Scholar
  28. 28.
    Orii K, Tomatsu S, Suzuki Y, Solyom A, Radsak M, Schuchman EH, et al. Safety study o sodium pentosan polysulate dor adult patients with mucopolysaccharidosis type II. Mol Genet Metab. 2016;117(2):S88.Google Scholar
  29. 29.
    Polgreen LE, Vehe RK, Rudser K, Kunin-Batson A, Utz JJ, Dickson P, et al. Elevated TNF-alpha is associated with pain and physical disability in mucopolysaccharidosis types I, II, and VI. Mol Genet Metab. 2016;117(4):427–30.Google Scholar
  30. 30.
    Guo N, DeAngelis V, Zhu C, Schuchman EH, Simonaro CM. Pentosan polysulfate treatment of mucopolysaccharidosis type IIIA mice. JIMD Rep. 2019;43:37–52.Google Scholar
  31. 31.
    Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet. 2019;64(2):127–37.Google Scholar
  32. 32.
    Boyd R, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman B, et al. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem. 2013;56(7):2705–25.Google Scholar
  33. 33.
    Olarte S, Rodriguez-Lopez A, Almeciga-Diaz C. A pharmacological chaperone for human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an in-silico analysis. Mol Genet Metab. 2014;111(2):S82.Google Scholar
  34. 34.
    Hoshina H, Shimada Y, Higuchi T, Kobayashi H, Ida H, Ohashi T. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II. Mol Genet Metab. 2017;123(2):118–22.Google Scholar
  35. 35.
    Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288–96.Google Scholar
  36. 36.
    Pereira DM, Valentao P, Andrade PB. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chem Sci. 2018;9(7):1740–52.Google Scholar
  37. 37.
    Ries M. Enzyme replacement therapy and beyond-in memoriam Roscoe O. Brady, M.D. (1923–2016). J Inherit Metab Dis. 2017;40(3):343–56.Google Scholar
  38. 38.
    Li M. Enzyme replacement therapy: a review and its role in treating lysosomal storage diseases. Pediatr Ann. 2018;47(5):e191–7.Google Scholar
  39. 39.
    Desnick R, Schuchman E. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genom Hum Genet. 2012;13:307–35.Google Scholar
  40. 40.
    Sanford M, Lo JH. Elosulfase alfa: first global approval. Drugs. 2014;74(6):713–8.Google Scholar
  41. 41.
    Qi Y, McKeever K, Taylor J, Haller C, Song W, Jones SA, et al. Pharmacokinetic and pharmacodynamic modeling to optimize the dose of vestronidase alfa, an enzyme replacement therapy for treatment of patients with mucopolysaccharidosis type VII: results from three trials. Clin Pharmacokinet. 2018;58(5):673–83.Google Scholar
  42. 42.
    Wraith JE, Clarke LA, Beck M, Kolodny EH, Pastores GM, Muenzer J, et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-l-iduronidase (laronidase). J Pediatr. 2004;144(5):581–8.Google Scholar
  43. 43.
    Jameson E, Jones S, Remmington T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst Rev. 2016;4:CD009354.Google Scholar
  44. 44.
    Clarke LA, Wraith JE, Beck M, Kolodny EH, Pastores GM, Muenzer J, et al. Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics. 2009;123(1):229–40.Google Scholar
  45. 45.
    Wraith J, Beck M, Lane R, van-der-Ploeg A, Shapiro E, Xue Y, et al. Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: results of a multinational study of recombinant human alpha-l-iduronidase (laronidase). Pediatrics. 2007;120(1):e37–46.Google Scholar
  46. 46.
    Xue Y, Richards SM, Mahmood A, Cox GF. Effect of anti-laronidase antibodies on efficacy and safety of laronidase enzyme replacement therapy for MPS I: a comprehensive meta-analysis of pooled data from multiple studies. Mol Genet Metab. 2016;117(4):419–26.Google Scholar
  47. 47.
    Kim C, Seo J, Chung Y, Ji HJ, Lee J, Sohn J, et al. Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet. 2016;62(2):167–74.Google Scholar
  48. 48.
    Muenzer J, Wraith JE, Beck M, Giugliani R, Harmatz P, Eng CM, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465–73.Google Scholar
  49. 49.
    Muenzer J, Beck M, Eng CM, Giugliani R, Harmatz P, Martin R, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13(2):95–101.Google Scholar
  50. 50.
    Parini R, Rigoldi M, Tedesco L, Boffi L, Brambilla A, Bertoletti S, et al. Enzymatic replacement therapy for Hunter disease: Up to 9 years experience with 17 patients. Mol Genet Metab Rep. 2015;3:65–74.Google Scholar
  51. 51.
    Lampe C, Bosserhoff AK, Burton BK, Giugliani R, de Souza CF, Bittar C, et al. Long-term experience with enzyme replacement therapy (ERT) in MPS II patients with a severe phenotype: an international case series. J Inherit Metab Dis. 2014;37(5):823–9.Google Scholar
  52. 52.
    Sohn YB, Cho SY, Lee J, Kwun Y, Huh R, Jin D-K. Safety and efficacy of enzyme replacement therapy with idursulfase beta in children aged younger than 6 years with Hunter syndrome. Mol Genet Metab. 2015;114(2):156–60.Google Scholar
  53. 53.
    Boado RJ, Lu JZ, Hui EK, Pardridge WM. Insulin receptor antibody-sulfamidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type A cells. Mol Pharm. 2014;11(8):2928–34.Google Scholar
  54. 54.
    Jones SA, Breen C, Heap F, Rust S, de Ruijter J, Tump E, et al. A phase 1/2 study of intrathecal heparan-N-sulfatase in patients with mucopolysaccharidosis IIIA. Mol Genet Metab. 2016;118(3):198–205.Google Scholar
  55. 55.
    Kan SH, Aoyagi-Scharber M, Le SQ, Vincelette J, Ohmi K, Bullens S, et al. Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB. Proc Natl Acad Sci USA. 2014;111(41):14870–5.Google Scholar
  56. 56.
    Kan SH, Troitskaya LA, Sinow CS, Haitz K, Todd AK, Di SA, et al. Insulin-like growth factor II peptide fusion enables uptake and lysosomal delivery of alpha-N-acetylglucosaminidase to mucopolysaccharidosis type IIIB fibroblasts. Biochem J. 2014;458(2):281–9.Google Scholar
  57. 57.
    Boado RJ, Lu JZ, Hui EK, Lin H, Pardridge WM. Insulin receptor antibody-alpha-N-acetylglucosaminidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type B fibroblasts. Mol Pharm. 2016;13(4):1385–92.Google Scholar
  58. 58.
    Giugliani R, Dalla Corte A, Poswar F, Vanzella C, Horovitz D, Riegel M, et al. Intrathecal/Intracerebroventricular enzyme replacement therapy for the mucopolysaccharidoses: efficacy, safety, and prospects. Expert Opin Orphan Drugs. 2018;6(7):403–11.Google Scholar
  59. 59.
    Hendriksz CJ, Burton B, Fleming TR, Harmatz P, Hughes D, Jones SA, et al. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study. J Inherit Metab Dis. 2014;37(6):979–90.Google Scholar
  60. 60.
    Hendriksz CJ, Giugliani R, Harmatz P, Mengel E, Guffon N, Valayannopoulos V, et al. Multi-domain impact of elosufase alfa in Morquio A syndrome in the pivotal phase III trial. Mol Genet Metab. 2014;114(2):178–85.Google Scholar
  61. 61.
    Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, et al. Immunogenicity of elosulfase alfa, an enzyme replacement therapy in patients with Morquio A syndrome: results from MOR-004, a phase III trial. Clin Ther. 2015;37(5):1012–21.Google Scholar
  62. 62.
    Do CJ, Wiedemann A, Quinaux T, Battaglia-Hsu SF, Mainard L, Froissart R, et al. 30 months follow-up of an early enzyme replacement therapy in a severe Morquio A patient: about one case. Mol Genet Metab Rep. 2016;9:42–5.Google Scholar
  63. 63.
    Doherty C, Stapleton M, Piechnik M, Mason RW, Mackenzie WG, Yamaguchi S, et al. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J Hum Genet. 2019. (Epub 24 Apr 2019).Google Scholar
  64. 64.
    Tomatsu S, Montaño A, Ohashi A, Oikawa H, Oguma T, Dung VC, et al. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet. 2007;17(6):815–24.Google Scholar
  65. 65.
    Tomatsu S, Sawamoto K, Alméciga-Díaz CJ, Shimada T, Bober MB, Chinen Y, et al. Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug Des Devel Ther. 2015;9:1937–53.Google Scholar
  66. 66.
    Tomatsu S, Sawamoto K, Shimada T, Bober MB, Kubaski F, Yasuda E, et al. Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs. 2015;3(11):1279–90.Google Scholar
  67. 67.
    Harmatz P, Ketteridge D, Giugliani R, Guffon N, Teles EL, Miranda MC, et al. Direct comparison of measures of endurance, mobility, and joint function during enzyme-replacement therapy of mucopolysaccharidosis VI (Maroteaux–Lamy syndrome): results after 48 weeks in a phase 2 open-label clinical study of recombinant human N-acetylgalactosamine 4-sulfatase. Pediatrics. 2005;115(6):e681–9.Google Scholar
  68. 68.
    Harmatz P, Giugliani R, Schwartz I, Guffon N, Teles EL, Miranda MC, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr. 2006;148(4):533–9.Google Scholar
  69. 69.
    Harmatz P, Giugliani R, Schwartz IV, Guffon N, Teles EL, Miranda MC, et al. Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: Final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab. 2008;94(4):469–75.Google Scholar
  70. 70.
    Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011;63(Suppl 11):S350–70.Google Scholar
  71. 71.
    Dempsey TM, Scanlon PD. Pulmonary function tests for the generalist: a brief review. Mayo Clin Proc. 2018;93(6):763–71.Google Scholar
  72. 72.
    Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93(4):529–41.Google Scholar
  73. 73.
    Ulrich S, Hildenbrand FF, Treder U, Fischler M, Keusch S, Speich R, et al. Reference values for the 6-minute walk test in healthy children and adolescents in Switzerland. BMC Pulm Med. 2013;13:49.Google Scholar
  74. 74.
    Cacau LA, de Santana-Filho VJ, Maynard LG, Gomes MN, Fernandes M, Carvalho VO. Reference values for the six-minute walk test in healthy children and adolescents: a systematic review. Braz J Cardiovasc Surg. 2016;31(5):381–8.Google Scholar
  75. 75.
    Mylius CF, Paap D, Takken T. Reference value for the 6-minute walk test in children and adolescents: a systematic review. Expert Rev Respir Med. 2016;10(12):1335–52.Google Scholar
  76. 76.
    Zou H, Zhang J, Chen X, Wang Y, Lin W, Lin J, et al. Reference equations for the six-minute walk distance in the healthy Chinese Han population, aged 18–30 years. BMC Pulm Med. 2017;17(1):119.Google Scholar
  77. 77.
    Rodriguez-Nunez I, Mondaca F, Casas B, Ferreira C, Zenteno D. Normal values of 6-minute walk test in healthy children and adolescents: a systematic review and meta-analysis [in Spanish]. Rev Chil Pediatr. 2018;89(1):128–36.Google Scholar
  78. 78.
    Schrover R, Evans K, Giugliani R, Noble I, Bhattacharya K. Minimal clinically important difference for the 6-min walk test: literature review and application to Morquio A syndrome. Orphanet J Rare Dis. 2017;12(1):78.Google Scholar
  79. 79.
    Hendriksz CJ, Parini R, AlSayed MD, Raiman J, Giugliani R, Solano Villarreal ML, et al. Long-term endurance and safety of elosulfase alfa enzyme replacement therapy in patients with Morquio A syndrome. Mol Genet Metab. 2016;119(1–2):131–43.Google Scholar
  80. 80.
    Pierce R. Spirometry: an essential clinical measurement. Aust Fam Physician. 2005;34(7):535–9.Google Scholar
  81. 81.
    Burton BK, Berger KI, Lewis GD, Tarnopolsky M, Treadwell M, Mitchell JJ, et al. Safety and physiological effects of two different doses of elosulfase alfa in patients with Morquio A syndrome: a randomized, double-blind, pilot study. Am J Med Genet A. 2015;167A(10):2272–81.Google Scholar
  82. 82.
    Clarke LA, Winchester B, Giugliani R, Tylki-Szymanska A, Amartino H. Biomarkers for the mucopolysaccharidoses: discovery and clinical utility. Mol Genet Metab. 2012;106(4):395–402.Google Scholar
  83. 83.
    Tomatsu S, Shimada T, Mason RW, Montano AM, Kelly J, LaMarr WA, et al. Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Metabolites. 2014;4(3):655–79.Google Scholar
  84. 84.
    Khan SA, Mason RW, Giugliani R, Orii K, Fukao T, Suzuki Y, et al. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab. 2018;125(1–2):44–52.Google Scholar
  85. 85.
    Sun X, Li L, Overdier KH, Ammons LA, Douglas IS, Burlew CC, et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography–tandem mass spectrometry. Anal Chem. 2015;87(12):6220–7.Google Scholar
  86. 86.
    Lin HY, Lee CL, Lo YT, Wang TJ, Huang SF, Chen TL, et al. The relationships between urinary glycosaminoglycan levels and phenotypes of mucopolysaccharidoses. Mol Genet Genom Med. 2018;6(6):982–92.Google Scholar
  87. 87.
    Kim S, Whitley CB, Jarnes UJR. Correlation between urinary GAG and anti-idursulfase ERT neutralizing antibodies during treatment with NICIT immune tolerance regimen: a case report. Mol Genet Metab. 2017;122(1–2):92–9.Google Scholar
  88. 88.
    Giugliani R, Harmatz P, Jones SA, Mendelsohn NJ, Vellodi A, Qiu Y, et al. Evaluation of impact of anti-idursulfase antibodies during long-term idursulfase enzyme replacement therapy in mucopolysaccharidosis II patients. Mol Genet Metab Rep. 2017;12:2–7.Google Scholar
  89. 89.
    Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.Google Scholar
  90. 90.
    Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.Google Scholar
  91. 91.
    Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers—anatomic and physiologic considerations. Handb Clin Neurol. 2017;146:21–32.Google Scholar
  92. 92.
    Zhang H, Young SP, Auray-Blais C, Orchard PJ, Tolar J, Millington DS. Analysis of glycosaminoglycans in cerebrospinal fluid from patients with mucopolysaccharidoses by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Clin Chem. 2011;57(7):1005–12.Google Scholar
  93. 93.
    Tanaka N, Kida S, Kinoshita M, Morimoto H, Shibasaki T, Tachibana K, et al. Evaluation of cerebrospinal fluid heparan sulfate as a biomarker of neuropathology in a murine model of mucopolysaccharidosis type II using high-sensitivity LC/MS/MS. Mol Genet Metab. 2018;125(1–2):53–8.Google Scholar
  94. 94.
    Pan P, Chen M, Zhang Z, Corte AD, Souza C, Giugliani R, et al. A novel LC–MS/MS assay to quantify dermatan sulfate in cerebrospinal fluid as a biomarker for mucopolysaccharidosis II. Bioanalysis. 2018;10(11):825–38.Google Scholar
  95. 95.
    Raymond GV, Pasquali M, Polgreen LE, Dickson PI, Miller WP, Orchard PJ, et al. Elevated cerebral spinal fluid biomarkers in children with mucopolysaccharidosis I-H. Sci Rep. 2016;6:38305.Google Scholar
  96. 96.
    Hendriksz CJ, Muenzer J, Vanderver A, Davis JM, Burton BK, Mendelsohn NJ, et al. Levels of glycosaminoglycans in the cerebrospinal fluid of healthy young adults, surrogate-normal children, and Hunter syndrome patients with and without cognitive impairment. Mol Genet Metab Rep. 2015;5:103–6.Google Scholar
  97. 97.
    Naimy H, Powell KD, Moriarity JR, Wu J, McCauley TG, Haslett PA, et al. A novel LC–MS/MS assay for heparan sulfate screening in the cerebrospinal fluid of mucopolysaccharidosis IIIA patients. Bioanalysis. 2016;8(4):285–95.Google Scholar
  98. 98.
    Muenzer J, Hendriksz CJ, Fan Z, Vijayaraghavan S, Perry V, Santra S, et al. A phase I/II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II. Genet Med. 2016;18(1):73–81.Google Scholar
  99. 99.
    Sohn YB, Ko AR, Seong MR, Lee S, Kim MR, Cho SY, et al. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis. 2018;41(6):1235–46.Google Scholar
  100. 100.
    Aoyagi-Scharber M, Crippen-Harmon D, Lawrence R, Vincelette J, Yogalingam G, Prill H, et al. Clearance of heparan sulfate and attenuation of CNS pathology by intracerebroventricular BMN 250 in Sanfilippo type B mice. Mol Ther Methods Clin Dev. 2017;6:43–53.Google Scholar
  101. 101.
    Nestrasil I, Shapiro E, Svatkova A, Dickson P, Chen A, Wakumoto A, et al. Intrathecal enzyme replacement therapy reverses cognitive decline in mucopolysaccharidosis type I. Am J Med Genet A. 2017;173(3):780–3.Google Scholar
  102. 102.
    Dickson PI, Kaitila I, Harmatz P, Mlikotic A, Chen AH, Victoroff A, et al. Safety of laronidase delivered into the spinal canal for treatment of cervical stenosis in mucopolysaccharidosis I. Mol Genet Metab. 2015;116(1–2):69–74.Google Scholar
  103. 103.
    King B, Marshall NR, Hassiotis S, Trim PJ, Tucker J, Hattersley K, et al. Slow, continuous enzyme replacement via spinal CSF in dogs with the paediatric-onset neurodegenerative disease. MPS IIIA. J Inherit Metab Dis. 2017;40(3):443–53.Google Scholar
  104. 104.
    King B, Setford ML, Hassiotis S, Trim PJ, Duplock S, Tucker JN, et al. Low-dose, continual enzyme delivery ameliorates some aspects of established brain disease in a mouse model of a childhood-onset neurodegenerative disorder. Exp Neurol. 2016;278:11–21.Google Scholar
  105. 105.
    Boado RJ, Zhang Y, Xia CF, Wang Y, Pardridge WM. Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood–brain barrier. Biotechnol Bioeng. 2008;99(2):475–84.Google Scholar
  106. 106.
    Zhou QH, Boado RJ, Lu JZ, Hui EK, Pardridge WM. Brain-penetrating IgG-iduronate 2-sulfatase fusion protein for the mouse. Drug Metab Dispos. 2012;40(2):329–35.Google Scholar
  107. 107.
    Boado RJ, Pardridge WM. Brain and organ uptake in the rhesus monkey in vivo of recombinant iduronidase compared to an insulin receptor antibody-iduronidase fusion protein. Mol Pharm. 2017;14(4):1271–7.Google Scholar
  108. 108.
    Pardridge WM, Boado RJ, Giugliani R, Schmidt M. Plasma pharmacokinetics of Valanafusp alpha, a human insulin receptor antibody-iduronidase fusion protein, in patients with mucopolysaccharidosis type I. BioDrugs. 2018;32(2):169–76.Google Scholar
  109. 109.
    Schmidt M, Boado RJ, Giugliani R, Pardridge WM. Anti-drug antibody response in mucopolysaccharidosis type I patients treated with AGT-181, a brain penetrating human insulin receptor antibody-iduronidase fusion protein. Mol Genet Metab. 2018;123(2):S126.Google Scholar
  110. 110.
    Sonoda H, Morimoto H, Yoden E, Koshimura Y, Kinoshita M, Golovina G, et al. A blood–brain-barrier-penetrating anti-human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol Ther. 2018;26(5):1366–74.Google Scholar
  111. 111.
    Okuyama T, Eto Y, Sakai N, Minami K, Yamamoto T, Sonoda H, et al. Iduronate-2-sulfatase with anti-human transferrin receptor antibody for neuropathic mucopolysaccharidosis II: a phase 1/2 trial. Mol Ther. 2019;27(2):456–64.Google Scholar
  112. 112.
    Hsu YH, Liu RS, Lin WL, Yuh YS, Lin SP, Wong TT. Transcranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for mucopolysaccharidosis type I disease. Orphanet J Rare Dis. 2017;12(1):109.Google Scholar
  113. 113.
    Horovitz DD, Acosta AX, Giugliani R, Hlavata A, Hlavata K, Tchan MC, et al. Alternative laronidase dose regimen for patients with mucopolysaccharidosis I: a multinational, retrospective, chart review case series. Orphanet J Rare Dis. 2016;11(1):51.Google Scholar
  114. 114.
    Long B, Tompkins T, Decker C, Jesaitis L, Khan S, Slasor P, et al. Long-term immunogenicity of elosulfase alfa in the treatment of Morquio A syndrome: results from MOR-005, a phase III extension study. Clin Ther. 2017;39(1):118 e113–129 e113.Google Scholar
  115. 115.
    Kor D, Seker Yilmaz B, Bulut FD, Onenli Mungan N, Ufuk Altintas D. A desensitization method to maintain enzyme replacement therapy in mucopolysaccharidosis type VI. J Investig Allergol Clin Immunol. 2016;26(2):130–2.Google Scholar
  116. 116.
    Giugliani R, Vieira TA, Carvalho CG, Munoz-Rojas MV, Semyachkina AN, Voinova VY, et al. Immune tolerance induction for laronidase treatment in mucopolysaccharidosis I. Mol Genet Metab Rep. 2017;10:61–6.Google Scholar
  117. 117.
    Espejo-Mojica Á, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, et al. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab. 2015;116(1–2):13–23.Google Scholar
  118. 118.
    Rodriguez A, Espejo AJ, Hernandez A, Velasquez OL, Lizaraso LM, Cordoba HA, et al. Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21. J Ind Microbiol Biotechnol. 2010;37(11):1193–201.Google Scholar
  119. 119.
    Mosquera A, Rodríguez A, Soto C, Leonardi F, Espejo A, Sánchez OF, et al. Characterization of a recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in E. coli for enzyme replacement therapy of Morquio A disease. Process Biochem. 2012;47:2097–102.Google Scholar
  120. 120.
    Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, et al. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep. 2016;6:29329–42.Google Scholar
  121. 121.
    Reyes LH, Cardona C, Pimentel L, Rodriguez-Lopez A, Almeciga-Diaz CJ. Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep. 2017;7(1):5844–58.Google Scholar
  122. 122.
    Córdoba-Ruiz HA, Poutou-Piñales RA, Echeverri-Peña OY, Algecira-Enciso NA, Landázuri P, Sáenz H, et al. Laboratory scale production of the human recombinant iduronate 2-sulfate sulfatase-like from Pichia pastoris. Afr J Biotechnol. 2009;8(9):1786–92.Google Scholar
  123. 123.
    Landázuri P, Poutou-Piñales RA, Acero-Godoy J, Córdoba-Ruiz H, Echeverri-Peña OY, Sáenz H, et al. Cloning and shake flask expression of hrIDS-like in Pichia pastoris. Afr J Biotechnol. 2009;8(12):2871–7.Google Scholar
  124. 124.
    Poutou-Piñales RA, Vanegas A, Landázuri P, Sáenz H, Lareo L, Echeverri O, et al. Human sulfatase transiently and functionally active expressed in E. coli K12. Electron J Biotechnol. 2010;13(3):1–10.Google Scholar
  125. 125.
    Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Sáenz-Suárez H, et al. Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-like enzyme from Escherichia coli K12. J Microbiol. 2013;51(2):213–21.Google Scholar
  126. 126.
    Pimentel N, Rodríguez-López A, Díaz S, Losada J, Díaz-Rincón D, Cardona C, et al. Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris. Biotechnol Appl Biochem. 2018;65(5):655–64.Google Scholar
  127. 127.
    Guise KS, Korneluk RG, Waye J, Lamhonwah AM, Quan F, Palmer R, et al. Isolation and expression in Escherichia coli of a cDNA clone encoding human beta-glucuronidase. Gene. 1985;34(1):105–10.Google Scholar
  128. 128.
    Downing WL, Galpin JD, Clemens S, Lauzon SM, Samuels AL, Pidkowich MS, et al. Synthesis of enzymatically active human α-l-iduronidase in Arabidopsis cgl (complex glycan-deficient) seeds. Plant Biotechnol J. 2006;4(2):169–81.Google Scholar
  129. 129.
    Pierce OM, McNair GR, He X, Kajiura H, Fujiyama K, Kermode AR. N-glycan structures and downstream mannose-phosphorylation of plant recombinant human alpha-l-iduronidase: toward development of enzyme replacement therapy for mucopolysaccharidosis I. Plant Mol Biol. 2017;95(6):593–606.Google Scholar
  130. 130.
    Seoul National University Hospital. Targeted busulfan, fludarabine, etoposide conditioning regimen for HSCT in childhood and adolescent ALL. 2014. Accessed 28 Jan 2014.
  131. 131.
    Chen Y, Xu LP, Zhang XH, Chen H, Wang FR, Liu KY, et al. Busulfan, fludarabine, and cyclophosphamide (BFC) conditioning allowed stable engraftment after haplo-identical allogeneic stem cell transplantation in children with adrenoleukodystrophy and mucopolysaccharidosis. Bone Marrow Transplant. 2018;53(6):770–3.Google Scholar
  132. 132.
    Lum SH, Jones SA, Ghosh A, Bigger BW, Wynn RF. Hematopoietic stem cell transplant for the mucopolysaccharidoses. Expert Opin Orphan Drugs. 2016;4(4):379–93.Google Scholar
  133. 133.
    Krivit W, Peters C, Shapiro EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux–Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol. 1999;12(2):167–76.Google Scholar
  134. 134.
    Valstar MJ, Marchal JP, Grootenhuis M, Colland V, Wijburg FA. Cognitive development in patients with Mucopolysaccharidosis type III (Sanfilippo syndrome). Orphanet J Rare Dis. 2011;6:43.Google Scholar
  135. 135.
    Yasuda E, Mackenzie W, Ruhnke K, Shimada T, Mason RW, Zustin J, et al. Molecular genetics and metabolism report long-term follow-up of post hematopoietic stem cell transplantation for Hurler syndrome: clinical, biochemical, and pathological improvements. Mol Genet Metab Rep. 2015;2:65–76.Google Scholar
  136. 136.
    Aoki J, Kanamori H, Tanaka M, Yamasaki S, Fukuda T, Ogawa H, et al. Impact of age on outcomes of allogeneic hematopoietic stem cell transplantation with reduced intensity conditioning in elderly patients with acute myeloid leukemia. Am J Hematol. 2016;91(3):302–7.Google Scholar
  137. 137.
    Barth AL, de Magalhães TSPC, Reis ABR, de Oliveira ML, Scalco FB, Cavalcanti NC, et al. Early hematopoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: a 7 years follow-up. Mol Genet Metab Rep. 2017;12:62–8.Google Scholar
  138. 138.
    Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296(5577):2410–3.Google Scholar
  139. 139.
    Wang J, Luan Z, Jiang H, Fang J, Qin M, Lee V, et al. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis—a ten-year report from the China children transplant group. Biol Blood Marrow Transplant. 2016;22(11):2104–8.Google Scholar
  140. 140.
    Yabe H, Tanaka A, Chinen Y, Kato S, Sawamoto K, Yasuda E, et al. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab. 2016;117(2):84–94.Google Scholar
  141. 141.
    Martins AM, Dualibi AP, Norato D, Takata ET, Santos ES, Valadares ER, et al. Guidelines for the management of mucopolysaccharidosis type I. J Pediatr. 2009;155(4 Suppl):S32–46.Google Scholar
  142. 142.
    Wraith JE, Jones S. Mucopolysaccharidosis type I. Pediatr Endocrinol Rev. 2014;12(Suppl 1):102–6.Google Scholar
  143. 143.
    Schmidt M, Breyer S, Lobel U, Yarar S, Stucker R, Ullrich K, et al. Musculoskeletal manifestations in mucopolysaccharidosis type I (Hurler syndrome) following hematopoietic stem cell transplantation. Orphanet J Rare Dis. 2016;11(1):93.Google Scholar
  144. 144.
    Friedman MA, Fernandez M, Wefel JS, Myszka KA, Champlin RE, Meyers CA. Course of cognitive decline in hematopoietic stem cell transplantation: a within-subjects design. Arch Clin Neuropsychol. 2009;24(7):689–98.Google Scholar
  145. 145.
    Ghazikhanian SE, Dorfman CS, Somers TJ, O’Sullivan ML, Fisher HM, Edmond SN, et al. Cognitive problems following hematopoietic stem cell transplant: relationships with sleep, depression and fatigue. Bone Marrow Transplant. 2017;52(2):279–84.Google Scholar
  146. 146.
    Chinen Y, Higa T, Tomatsu S, Suzuki Y, Orii T, Hyakuna N. Long-term therapeutic efficacy of allogenic bone marrow transplantation in a patient with mucopolysaccharidosis IVA. Mol Genet Metab Rep. 2014;1:31–41.Google Scholar
  147. 147.
    Ashby WR, Stewart RM, Watkin JH. Chondro-osteo-dystrophy of Hurler type (gargolism). A pathological study. Brain. 1937;60(2):149–79.Google Scholar
  148. 148.
    Berliner ML. Lipin keratitis of hurler’s syndrome (gargoylism or dysostosis multiplex): clinical and pathologic report. Arch Ophthalmol. 1939;22(1):97–105.Google Scholar
  149. 149.
    Kiely BT, Kohler JL, Coletti HY, Poe MD, Escolar ML. Early disease progression of Hurler syndrome. Orphanet J Rare Dis. 2017;12(1):32.Google Scholar
  150. 150.
    Kemper AR, Brosco J, Green NS, Ojodu J, Jones E, Comeau A, et al. Newborn screening for mucopolysaccharidosis type 1 (MPS I): a systematic review of evidence. Report of final findings. Rockville: Health Resources and Services Administration: Maternal and Child Health Bureau; 2015. p. 1–62.Google Scholar
  151. 151.
    Peters C, Shapiro EG, Krivit W. Hurler syndrome: past, present, and future. J Pediatr. 1998;133(1):7–9.Google Scholar
  152. 152.
    White KK. Orthopaedic aspects of mucopolysaccharidoses. Rheumatology. 2011;50:26–33.Google Scholar
  153. 153.
    Spina V, Barbuti D, Gaeta A, Palmucci S, Soscia E, Grimaldi M, et al. The role of imaging in the skeletal involvement of mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):118.Google Scholar
  154. 154.
    Fahnehjelm KT, Monica O, Enping C, Jürg H, Karin N, Jacek W. Children with mucopolysaccharidosis despite haematopoietic stem cell transplants. Acta Paediatr. 2018;107:1995–2003.Google Scholar
  155. 155.
    Lin SP, Lin HY, Wang TJ, Chang CY, Lin CH, Huang SF, et al. A pilot newborn screening program for mucopolysaccharidosis type I in Taiwan. Orphanet J Rare Dis. 2013;8:147.Google Scholar
  156. 156.
    Clarke LA, Atherton AM, Burton BK, Day-Salvatore DL, Kaplan P, Leslie ND, et al. Mucopolysaccharidosis type I newborn screening: best practices for diagnosis and management. J Pediatr. 2017;182:363–70.Google Scholar
  157. 157.
    Chan MJ, Liao HC, Gelb MH, Chuang CK, Liu MY, Chen HJ, et al. Taiwan national newborn screening program by tandem mass spectrometry for mucopolysaccharidoses types I, II, and VI. J Pediatr. 2018;276:176–82.Google Scholar
  158. 158.
    Chuang CK, Lin HY, Wang TJ, Huang YH, Chan MJ, Liao HC, et al. Status of newborn screening and follow up investigations for mucopolysaccharidoses I and II in Taiwan. Orphanet J Rare Dis. 2018;13(1):84.Google Scholar
  159. 159.
    Kubaski F, Yabe H, Suzuki Y, Seto T, Hamazaki T, Mason RW, et al. Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol Blood Marrow Transplant. 2017;23(10):1795–803.Google Scholar
  160. 160.
    Saif MA, Bigger BW, Brookes KE, Mercer J, Tylee KL, Church HJ, et al. Hematopoietic stem cell transplantation improves the high incidence of neutralizing allo-antibodies observed in Hurler’s syndrome after pharmacological enzyme replacement therapy. Haematologica. 2012;97(9):1320–8.Google Scholar
  161. 161.
    Wilson PJ, Morris CP, Anson DS, Occhiodoro T, Bielicki J, Clements PR, et al. Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc Natl Acad Sci USA. 1990;87(21):8531–5.Google Scholar
  162. 162.
    Warkentin PI, Dixon MS Jr, Schafer I, Strandjord SE, Coccia PF. Bone marrow transplantation in Hunter syndrome: a preliminary report. Birth Defects Orig Artic Ser. 1986;22(1):31–9.Google Scholar
  163. 163.
    Barth A, Horovitz D. Hematopoietic stem cell transplantation in mucopolysaccharidosis type II: a literature review and critical analysis. J Inborn Errors Metab Screen. 2018;6:1–11.Google Scholar
  164. 164.
    Tanaka A, Okuyama T, Suzuki Y, Sakai N, Takakura H, Sawada T, et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107(3):513–20.Google Scholar
  165. 165.
    Patel P, Suzuki Y, Tanaka A, Yabe H, Kato S, Shimada T, et al. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol Genet Metab Rep. 2014;1:184–96.Google Scholar
  166. 166.
    Cleary MA, Wraith JE. Management of mucopolysaccharidosis type III. Arch Dis Child. 1993;69(3):403–6.Google Scholar
  167. 167.
    Dziedzic D, Węgrzyn G, Jakóbkiewicz-Banecka J. Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. Eur J Hum Genet. 2010;18(2):200–5.Google Scholar
  168. 168.
    Gaffke L, Pierzynowska K, Piotrowska E, Wegrzyn G. How close are we to therapies for Sanfilippo disease? Metab Brain Dis. 2018;33(1):1–10.Google Scholar
  169. 169.
    Welling L, Marchal JP, van Hasselt P, van der Ploeg AT, Wijburg FA, Boelens JJ. Early umbilical cord blood-derived stem cell transplantation does not prevent neurological deterioration in mucopolysaccharidosis type III. JIMD Rep. 2015;18:63–8.Google Scholar
  170. 170.
    Biswas SN, Patra S, Chakraborty PP, Barman H. Mucopolysaccharidosis type IVA (Morquio A): a close differential diagnosis of spondylo-epiphyseal dysplasia. BMJ Case Rep. 2017;2017:1–5.Google Scholar
  171. 171.
    Mentzer WC, Packman S, Wara W, et al. Successful bone marrow transplant in a child with sickle cell anemia and Morquio’s disease. Blood. 1990;76:69a.Google Scholar
  172. 172.
    Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, et al. Hematopoietic stem cell transplantation for mucopolysaccharidoses: past, present, and future. Biol Blood Marrow Transplant. 2019. (Epub 14 Feb 2019).Google Scholar
  173. 173.
    Turbeville S, Nicely H, Rizzo JD, Pedersen TL, Orchard PJ, Horwitz ME, et al. Clinical outcomes following hematopoietic stem cell transplantation for the treatment of mucopolysaccharidosis VI. Mol Genet Metab. 2011;102(2):111–5.Google Scholar
  174. 174.
    Krivit W, Pierpont ME, Ayaz K, Tsai M, Ramsay N, Kersey JH, et al. Bone-marrow transplantation in the Maroteaux–Lamy syndrome (mucopolysaccharidosis type VI)—biochemical and clinical status 24 months after transplantation. N Engl J Med. 1984;311(25):1606–11.Google Scholar
  175. 175.
    Sly WS, Quinton BA, McAlister WH, Rimoin DL. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr. 1973;82(2):249–57.Google Scholar
  176. 176.
    Montaño AM, Lock-Hock N, Steiner RD, Graham BH, Szlago M, Greenstein R, et al. Clinical course of sly syndrome (mucopolysaccharidosis type VII). J Med Genet. 2016;53(6):403–18.Google Scholar
  177. 177.
    Sisinni L, Pineda M, Coll MJ, Gort L, Turon E, Torrent M, et al. Haematopoietic stem cell transplantation for mucopolysaccharidosis type VII: a case report. Pediatr Transplant. 2018;22(7):e13278.Google Scholar
  178. 178.
    Yamada Y, Kato K, Sukegawa K, Tomatsu S, Fukuda S, Emura S, et al. Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation. Bone Marrow Transplant. 1998;21(6):629–34.Google Scholar
  179. 179.
    Rodgers N, Kaizer A, Miller W, Rudser K, Orchard P, Braunlin E. Mortality after hematopoietic stem cell transplantation for severe mucopolysaccharidosis type I: the 30-year University of Minnesota experience. J Inherit Metab Dis. 2017;40(2):271–80.Google Scholar
  180. 180.
    Walker RWM, Garbarino J. Anesthesia risk and the mucopolysaccharidoses: a challenging and changing landscape. J Child Sci. 2018;8(1):e116–23.Google Scholar
  181. 181.
    Bitencourt FH, Vieira TA, Steiner CE, Neto JC, Boy R, Schwartz IVD. Medical costs related to enzyme replacement therapy for mucopolysaccharidosis types I, II, and VI in Brazil: a multicenter study. Value Health Reg Issues. 2015;8:99–106.Google Scholar
  182. 182.
    Australian Government Department of Health. Guidelines for the treatment of mucopolysaccharidosis type I (MPS I) disease through the life saving drugs program. 2013. Accessed Jan 2019.
  183. 183.
    Parini R, Deodato F, Di Rocco M, Lanino E, Locatelli F, Messina C, et al. Open issues in mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis. 2017;12(1):112.Google Scholar
  184. 184.
    Grewal SS, Wynn R, Abdenur JE, Burton BK, Gharib M, Haase C, et al. Safety and efficacy of enzyme replacement therapy in combination with hematopoietic stem cell transplantation in Hurler syndrome. Genet Med. 2005;7(2):143–6.Google Scholar
  185. 185.
    de Ru MH, Boelens JJ, Das AM, Jones SA, van der Lee JH, Mahlaoui N, et al. Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis. 2011;6:55.Google Scholar
  186. 186.
    Fraldi A, Serafini M, Sorrentino NC, Gentner B, Aiuti A, Bernardo ME. Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Ital J Pediatr. 2018;44(Suppl 2):130.Google Scholar
  187. 187.
    Wolfe JH, Sands MS, Barker JE, Gwynn B, Rowe LB, Vogler CA, et al. Reversal of pathology in murine mucopolysaccharidosis type VII by somatic cell gene transfer. Nature. 1992;360(6406):749–53.Google Scholar
  188. 188.
    Wang D, Zhang W, Kalfa TA, Grabowski G, Davies S, Malik P, et al. Reprogramming erythroid cells for lysosomal enzyme production leads to visceral and CNS cross-correction in mice with Hurler syndrome. Proc Natl Acad Sci USA. 2009;106(47):19958–63.Google Scholar
  189. 189.
    Langford-Smith A, Wilkinson FL, Langford-Smith KJ, Holley RJ, Sergijenko A, Howe SJ, et al. Hematopoietic stem cell and gene therapy corrects primary neuropathology and behavior in mucopolysaccharidosis IIIA mice. Mol Ther. 2012;20(8):1610–21.Google Scholar
  190. 190.
    Dai M, Han J, El-Amouri SS, Brady RO, Pan D. Platelets are efficient and protective depots for storage, distribution, and delivery of lysosomal enzyme in mice with Hurler syndrome. Proc Natl Acad Sci USA. 2014;111(7):2680–5.Google Scholar
  191. 191.
    Wakabayashi T, Shimada Y, Akiyama K, Higuchi T, Fukuda T, Kobayashi H, et al. Hematopoietic stem cell gene therapy corrects neuropathic phenotype in murine model of mucopolysaccharidosis type II. Hum Gene Ther. 2015;26(6):357–66.Google Scholar
  192. 192.
    Braun SE, Pan D, Aronovich EL, Jonsson JJ, McIvor RS, Whitley CB. Preclinical studies of lymphocyte gene therapy for mild Hunter syndrome (mucopolysaccharidosis type II). Hum Gene Ther. 1996;7(3):283–90.Google Scholar
  193. 193. Ascending dose study of genome editing by the zinc finger nuclease (ZFN) therapeutic SB-318 in subjects with MPS I. Accessed Dec 2018.
  194. 194. Ascending dose study of genome editing by the zinc finger nuclease (ZFN) therapeutic SB-913 in subjects with MPS II. Accessed Dec 2018.
  195. 195. Intracerebral gene therapy for Sanfilippo type A syndrome. Accessed Dec 2018.
  196. 196. Long-term follow-up of Sanfilippo type A patients treated by intracerebral SAF-301 gene therapy. Accessed Dec 2018.
  197. 197. Phase I/II gene transfer clinical trial of scAAV9.U1a.hSGSH. Accessed Dec 2018.
  198. 198. Gene therapy in patients with mucopolysaccharidosis disease. Accessed Dec 2018.
  199. 199. Gene transfer clinical trial for mucopolysaccharidosis (MPS) IIIB (MPSIIIB). Accessed Dec 2018.
  200. 200. Gene therapy with modified autologous hematopoietic stem cells for the treatment of patients with mucopolysaccharidosis type I, Hurler variant (TigetT10_MPSIH). Accessed Dec 2018.
  201. 201.
  202. 202.
    Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99(18):11854–9.Google Scholar
  203. 203.
    Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.Google Scholar
  204. 204.
    Fu H, McCarty DM. Crossing the blood–brain-barrier with viral vectors. Curr Opin Virol. 2016;21:87–92.Google Scholar
  205. 205.
    Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.Google Scholar
  206. 206.
    Halbert CL, Miller AD, McNamara S, Emerson J, Gibson RL, Ramsey B, et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2006;17(4):440–7.Google Scholar
  207. 207.
    Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90.Google Scholar
  208. 208.
    Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.Google Scholar
  209. 209.
    Ferla R, O’Malley T, Calcedo R, O’Donnell P, Wang P, Cotugno G, et al. Gene therapy for mucopolysaccharidosis type VI is effective in cats without pre-existing immunity to AAV8. Hum Gene Ther. 2013;24(2):163–9.Google Scholar
  210. 210.
    Monteilhet V, Saheb S, Boutin S, Leborgne C, Veron P, Montus MF, et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther. 2011;19(11):2084–91.Google Scholar
  211. 211.
    Chicoine LG, Montgomery CL, Bremer WG, Shontz KM, Griffin DA, Heller KN, et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther. 2014;22(2):338–47.Google Scholar
  212. 212.
    Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med. 2013;5(194):194ra192.Google Scholar
  213. 213.
    Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004.Google Scholar
  214. 214.
    Desmaris N, Verot L, Puech JP, Caillaud C, Vanier MT, Heard JM. Prevention of neuropathology in the mouse model of Hurler syndrome. Ann Neurol. 2004;56(1):68–76.Google Scholar
  215. 215.
    Fraldi A, Hemsley K, Crawley A, Lombardi A, Lau A, Sutherland L, et al. Functional correction of CNS lesions in an MPS-IIIA mouse model by intracerebral AAV-mediated delivery of sulfamidase and SUMF1 genes. Hum Mol Genet. 2007;16(22):2693–702.Google Scholar
  216. 216.
    Winner LK, Beard H, Hassiotis S, Lau AA, Luck AJ, Hopwood JJ, et al. A preclinical study evaluating AAVrh10-based gene therapy for Sanfilippo syndrome. Hum Gene Ther. 2016;27(5):363–75.Google Scholar
  217. 217.
    Fu H, Samulski RJ, McCown TJ, Picornell YJ, Fletcher D, Muenzer J. Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery. Mol Ther. 2002;5(1):42–9.Google Scholar
  218. 218.
    Cressant A, Desmaris N, Verot L, Brejot T, Froissart R, Vanier MT, et al. Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J Neurosci. 2004;24(45):10229–39.Google Scholar
  219. 219.
    Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH. Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol. 1999;160(1):17–27.Google Scholar
  220. 220.
    Bosch A, Perret E, Desmaris N, Heard JM. Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther. 2000;1(1):63–70.Google Scholar
  221. 221.
    Sferra TJ, Qu G, McNeely D, Rennard R, Clark KR, Lo WD, et al. Recombinant adeno-associated virus-mediated correction of lysosomal storage within the central nervous system of the adult mucopolysaccharidosis type VII mouse. Hum Gene Ther. 2000;11(4):507–19.Google Scholar
  222. 222.
    Frisella WA, O’Connor LH, Vogler CA, Roberts M, Walkley S, Levy B, et al. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 2001;3(3):351–8.Google Scholar
  223. 223.
    Cearley CN, Wolfe JH. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci. 2007;27(3):9928–40.Google Scholar
  224. 224.
    Ciron C, Desmaris N, Colle MA, Raoul S, Joussemet B, Verot L, et al. Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol. 2006;60(2):204–13.Google Scholar
  225. 225.
    Ellinwood NM, Ausseil J, Desmaris N, Bigou S, Liu S, Jens JK, et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther. 2011;19(2):251–9.Google Scholar
  226. 226.
    Tardieu M, Zerah M, Husson B, de Bournonville S, Deiva K, Adamsbaum C, et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum Gene Ther. 2014;25(6):506–16.Google Scholar
  227. 227.
    Tardieu M, Zerah M, Gougeon ML, Ausseil J, de Bournonville S, Husson B, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol. 2017;16(9):712–20.Google Scholar
  228. 228.
    Gray SJ, Nagabhushan KS, McCown TJ, Jude SR. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 2013;20(4):450–9.Google Scholar
  229. 229.
    Samaranch L, Salegio EA, San SW, Kells AP, Bringas JR, Forsayeth J, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther. 2013;24(5):526–32.Google Scholar
  230. 230.
    Sorrentino NC, Maffia V, Strollo S, Cacace V, Romagnoli N, Manfredi A, et al. A comprehensive map of CNS transduction by eight recombinant adeno-associated virus serotypes upon cerebrospinal fluid administration in pigs. Mol Ther. 2016;24(2):276–86.Google Scholar
  231. 231.
    Haurigot V, Marco S, Ribera A, Garcia M, Ruzo A, Villacampa P, et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J Clin Investig. 2013;123:3254–71.Google Scholar
  232. 232.
    Hinderer C, Bell P, Gurda BL, Wang Q, Louboutin JP, Zhu Y, et al. Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I. Mol Ther. 2014;22(12):2018–27.Google Scholar
  233. 233.
    Ribera A, Haurigot V, Garcia M, Marco S, Motas S, Villacampa P, et al. Biochemical, histological and functional correction of mucopolysaccharidosis type IIIB by intra-cerebrospinal fluid gene therapy. Hum Mol Genet. 2015;24(7):2078–95.Google Scholar
  234. 234.
    Gurda BL, De GDLA, Bell P, Zhu Y, Yu H, Wang P, et al. Evaluation of AAV-mediated gene therapy for central nervous system disease in canine mucopolysaccharidosis VII. Mol Ther. 2016;24(2):206–16.Google Scholar
  235. 235.
    Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, et al. Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther. 2011;19(8):1440–8.Google Scholar
  236. 236.
    Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM. Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood–brain barrier gene delivery. Mol Ther. 2011;19(6):1025–33.Google Scholar
  237. 237.
    Ruzo A, Marco S, Garcia M, Villacampa P, Ribera A, Ayuso E, et al. Correction of pathological accumulation of glycosaminoglycans in central nervous system and peripheral tissues of MPSIIIA mice through systemic AAV9 gene transfer. Hum Gene Ther. 2012;23(12):1237–46.Google Scholar
  238. 238.
    Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PLC, et al. Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab. 2006;88(3):244–55.Google Scholar
  239. 239.
    Montaño A, Oikawa H, Tomatsu S, Nishioka T, Vogler C, Gutierrez M, et al. Acidic amino acid tag enhances response to enzyme replacement in mucopolusaccharidosis type VII. Mol Genet Metab. 2008;94(2):178–89.Google Scholar
  240. 240.
    Tomatsu S, Montaño AM, Dung V, Ohashi A, Oikawa H, Oguma T, et al. Enhacement of drug delivery: enzyme-replacement therapy for murine Morquio A syndrome. Mol Ther. 2010;18(6):1094–102.Google Scholar
  241. 241.
    Alméciga Díaz C, Montaño A, Barrera L, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res. 2018;84(4):1094–102.Google Scholar
  242. 242.
    Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126(15):1777–84.Google Scholar
  243. 243.
    Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO, et al. Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther. 2018;26(4):1127–36.Google Scholar
  244. 244.
    Ou L, DeKelver RC, Rohde M, Tom S, Radeke R, St MSJ, et al. ZFN-mediated in vivo genome editing corrects murine Hurler syndrome. Mol Ther. 2019;27(1):178–87.Google Scholar
  245. 245.
    Sheridan C. Sangamo’s landmark genome editing trial gets mixed reception. Nat Biotechnol. 2018;36(10):907–8.Google Scholar
  246. 246.
    Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm. 2018;122:158–66.Google Scholar
  247. 247.
    Schuh RS, Poletto E, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Releas. 2018;288:23–33.Google Scholar
  248. 248.
    Visigalli I, Delai S, Politi LS, Di DC, Cerri F, Mrak E, et al. Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood. 2010;116(24):5130–9.Google Scholar
  249. 249.
    Sergijenko A, Langford-Smith A, Liao AY, Pickford CE, McDermott J, Nowinski G, et al. Myeloid/Microglial driven autologous hematopoietic stem cell gene therapy corrects a neuronopathic lysosomal disease. Mol Ther. 2013;21(10):1938–49.Google Scholar
  250. 250.
    Holley RJ, Ellison SM, Fil D, O’Leary C, McDermott J, Senthivel N, et al. Macrophage enzyme and reduced inflammation drive brain correction of mucopolysaccharidosis IIIB by stem cell gene therapy. Brain. 2018;141(1):99–116.Google Scholar
  251. 251.
    Ahluwalia MS, Becker K, Levy BP. Epidermal growth factor receptor tyrosine kinase inhibitors for central nervous system metastases from non-small cell lung cancer. Oncologist. 2018;23(10):1199–209.Google Scholar
  252. 252.
    Platt FM, Butters TD. Substrate reduction therapy. In: Barranger JA, Cabrera-Salazar MA, editors. Lysosomal storage disorders. Boston: Springer; 2007. p. 153–68.Google Scholar
  253. 253.
    Boelens JJ, Wynn RF, Bierings M. HSCT for inborn errors of metabolism. ESH-EBMT Handbook on Haematopoietic Stem Cell Transplantation. Genoa: Forum Service Editore; 2008.Google Scholar
  254. 254.
    Roberts AL, Thomas BJ, Wilkinson AS, Fletcher JM, Byers S. Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA. Pediatr Res. 2006;60(3):309–14.Google Scholar
  255. 255.
    Roberts AL, Rees MH, Klebe S, Fletcher JM, Byers S. Improvement in behaviour after substrate deprivation therapy with rhodamine B in a mouse model of MPS IIIA. Mol Genet Metab. 2007;92:115–21.Google Scholar
  256. 256.
    Nijmeijer SCM, Wijburg FA. Mucopolysaccharidosis type III: current clinical trials, challenges and recommendations. Expert Opin Orphan Drugs. 2018;6(1):9–15.Google Scholar
  257. 257.
    Piotrowska E, Jakobkiewicz-Banecka J, Tylki-Szymanska A, Czartoryska B, Wegrzyn A, Wegrzyn G. Correlation between severity of mucopolysaccharidoses and combination of the residual enzyme activity and efficiency of glycosaminoglycan synthesis. Acta Paediatr. 2009;98(4):743–9.Google Scholar
  258. 258.
    Jakobkiewicz-Banecka J, Piotrowska E, Narajczyk M, Baranska S, Wegrzyn G. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J Biomed Sci. 2009;16:26.Google Scholar
  259. 259.
    Malinowska M, Wilkinson FL, Langford-Smith KJ, Langford-Smith A, Brown JR, Crawford BE, et al. Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One. 2010;5(12):e14192.Google Scholar
  260. 260.
    Delgadillo V, O’Callaghan MM, Artuch R, Montero R, Pineda M. Genistein supplementation in patients affected by Sanfilippo disease. J Inherit Metab Dis. 2011;34(5):1039–44.Google Scholar
  261. 261.
  262. 262.
    Parenti G, Moracci M, Fecarotta S, Andria G. Pharmacological chaperone therapy for lysosomal storage diseases. Future Med Chem. 2014;6(9):1031–45.Google Scholar
  263. 263.
    Tomatsu S, Montaño A, Nishioka T, Gutierrez M, Peña O, Trandafirescu G, et al. Mutation and polymorphism spectrum of the GALNS gene in mucopolysaccharidosis IVA (Morquio A). Hum Mutat. 2005;26:500–12.Google Scholar
  264. 264.
    Olarte-Avellaneda S, Rodríguez-López A, Alméciga-Díaz CJ, Barrera LA. Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype-phenotype correlation for Morquio A. Mol Biol Rep. 2014;41(11):7073–88.Google Scholar
  265. 265.
    Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, et al. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol. 2011;9(3):213–35.Google Scholar
  266. 266.
    Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 2015;23(7):1138–48.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kazuki Sawamoto
    • 1
  • Molly Stapleton
    • 1
    • 2
  • Carlos J. Alméciga-Díaz
    • 3
  • Angela J. Espejo-Mojica
    • 3
  • Juan Camilo Losada
    • 3
  • Diego A. Suarez
    • 3
    • 4
  • Shunji Tomatsu
    • 1
    • 5
    • 6
    • 7
    Email author
  1. 1.Nemours Biomedical ResearchNemours/Alfred I. duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Department of Biological SciencesUniversity of DelawareNewarkUSA
  3. 3.Institute for the Study of Inborn Errors of Metabolism, Faculty of SciencePontificia Universidad JaverianaBogotáColombia
  4. 4.Facultad de MedicinaUniversidad Nacional de ColombiaBogotáColombia
  5. 5.Department of PediatricsShimane UniversityShimaneJapan
  6. 6.Department of PediatricsGifu UniversityGifuJapan
  7. 7.Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations