Advertisement

Drugs

, Volume 79, Issue 10, pp 1065–1087 | Cite as

Current Treatments and New Developments in the Management of Glucocorticoid-induced Osteoporosis

  • Hennie G. RatermanEmail author
  • Irene E. M. Bultink
  • Willem F. Lems
Review Article

Abstract

Glucocorticoids (GCs) are often used for improvement of quality of life, particularly in the elderly, but long-term GC use may cause harm; bone loss and fractures are among the most devastating side effects. Fracture risk is particularly high in patients with a severe underlying disease with an urgent need for treatment with high-dose GCs. Moreover, it is important to realize that these patients suffer from an augmented background fracture risk as these patients have a high presence of traditional risk factors for osteoporosis, such as high age, low body mass index (BMI), smoking and relatives with osteoporosis or hip fractures. It is thus crucial for prevention of osteoporotic fractures to use the lowest dose of GC for a short period of time to prevent fractures. Another important task is optimal treatment of the underlying disease; for instance, fracture risk is higher in patients with active rheumatoid arthritis than in patients in whom rheumatoid arthritis is in remission. Thus, fracture risk is generally highest in the early phase, when GC dosage and the disease activity of the underlying disease are high. Finally, some of the traditional risk factors can be modulated, e.g., smoking and low BMI. Life-style measures, such as adequate amounts of calcium and vitamin D and exercise therapy are also crucial. In some patients, anti-osteoporotic drugs are also indicated. In general, oral bisphosphonates (BPs) are the first choice, because of their efficacy and safety combined with the low cost of the drug. However, for those patients who do not tolerate oral BPs, alternatives (“second-line therapies”) are available: BP intravenously (zoledronic acid), denosumab (Dmab), and teriparatide. Both zoledronic acid and Dmab have been proven to be superior to oral bisphosphonates like risedronate in improvement of bone mineral density. For teriparatide, vertebral fracture reduction has been shown in comparison with alendronate. Thus, to reduce the global burden of GC use and fracture risk, fracture risk management in GC users should involve at least involve life-style measures and the use of the lowest possible dose of GC. In high-risk patients, anti-osteoporotic drugs should be initiated. First choice drugs are oral BPs; however, in those with contraindications and those who do not tolerate oral BPs, second-line therapies should be started. Although this is a reasonable treatment algorithm, an unmet need is that the most pivotal (second-line) drugs are not used in daily clinical practice at the initial phase, usually characterized by high-dose GC and active underlying disease, when they are most needed. In some patients second-line drugs are started later in the disease course, with lower GC dosages and higher disease activity. As this is a paradox, we think it is a challenge for physicians and expert committees to develop an algorithm with clear indications in which specific patient groups second-line anti-osteoporotic drugs should or could be initiated as first-choice treatment.

Notes

Compliance with Ethical Standards

Funding

The authors declare that there was no funding for the preparation of this article.

Conflict of interest

Hennie G. Raterman received an unrestricted educational grant by UCB and consultant fees by Amgen, Cell gene and Sanof Genzyme. Irene E. M. Bultink received consultant and/or speaker fees (not related to the subject matter discussed in this manuscript) from Eli Lilly and Company Netherlands, Merck Sharpe and Dohme, Amgen, UCB Pharma, Roche Netherlands, and Sanofi Genzyme. W. F. Lems received consultant and/or speaker fees from Eli Lilly/Amgen/UCB Pharma, and Curaphar.

References

  1. 1.
    Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.  https://doi.org/10.1056/NEJMcp1012926.Google Scholar
  2. 2.
    Gudbjornsson B, Juliusson UI, Gudjonsson FV. Prevalence of long term steroid treatment and the frequency of decision making to prevent steroid induced osteoporosis in daily clinical practice. Ann Rheum Dis. 2002;61(1):32–6.Google Scholar
  3. 3.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.  https://doi.org/10.1007/s00198-007-0394-0.Google Scholar
  4. 4.
    Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9.  https://doi.org/10.1359/JBMR.040134.Google Scholar
  5. 5.
    Diez-Perez A, Hooven FH, Adachi JD, Adami S, Anderson FA, Boonen S, et al. Regional differences in treatment for osteoporosis. The Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone. 2011;49(3):493–8.  https://doi.org/10.1016/j.bone.2011.05.007.Google Scholar
  6. 6.
    van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.  https://doi.org/10.1007/s001980200108.Google Scholar
  7. 7.
    Natsui K, Tanaka K, Suda M, Yasoda A, Sakuma Y, Ozasa A, et al. High-dose glucocorticoid treatment induces rapid loss of trabecular bone mineral density and lean body mass. Osteoporos Int. 2006;17(1):105–8.  https://doi.org/10.1007/s00198-005-1923-3.Google Scholar
  8. 8.
    Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E, et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheumatol. 2001;44(1):202–11.  https://doi.org/10.1002/1529-0131(200101)44:1%3c202:AID-ANR27%3e3.0.CO;2-W.Google Scholar
  9. 9.
    Cohen S, Levy RM, Keller M, Boling E, Emkey RD, Greenwald M, et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheumatol. 1999;42(11):2309–18.  https://doi.org/10.1002/1529-0131(199911)42:11%3c2309:AID-ANR8%3e3.0.CO;2-K.Google Scholar
  10. 10.
    Reid DM, Devogelaer JP, Saag K, Roux C, Lau CS, Reginster JY, et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2009;373(9671):1253–63.  https://doi.org/10.1016/S0140-6736(09)60250-6.Google Scholar
  11. 11.
    Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.  https://doi.org/10.1359/jbmr.2000.15.6.993.Google Scholar
  12. 12.
    van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM. 2005;98(3):191–8.  https://doi.org/10.1093/qjmed/hci029.Google Scholar
  13. 13.
    Waljee AK, Rogers MA, Lin P, Singal AG, Stein JD, Marks RM, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415.  https://doi.org/10.1136/bmj.j1415.Google Scholar
  14. 14.
    Ton FN, Gunawardene SC, Lee H, Neer RM. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res. 2005;20(3):464–70.  https://doi.org/10.1359/JBMR.041125.Google Scholar
  15. 15.
    Lems WF, Van Veen GJ, Gerrits MI, Jacobs JW, Houben HH, Van Rijn HJ, et al. Effect of low-dose prednisone (with calcium and calcitriol supplementation) on calcium and bone metabolism in healthy volunteers. Br J Rheumatol. 1998;37(1):27–33.Google Scholar
  16. 16.
    van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford). 2000;39(12):1383–9.Google Scholar
  17. 17.
    van Staa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C. Use of oral corticosteroids in the United Kingdom. QJM. 2000;93(2):105–11.Google Scholar
  18. 18.
    Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheumatol. 2003;48(11):3224–9.  https://doi.org/10.1002/art.11283.Google Scholar
  19. 19.
    Compston J. Clinical question: What is the best approach to managing glucocorticoid-induced osteoporosis? Clin Endocrinol (Oxf). 2011;74(5):547–50.  https://doi.org/10.1111/j.1365-2265.2011.03994.x.Google Scholar
  20. 20.
    De Vries F, Bracke M, Leufkens HG, Lammers JW, Cooper C, Van Staa TP. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheumatol. 2007;56(1):208–14.  https://doi.org/10.1002/art.22294.Google Scholar
  21. 21.
    Schett G, Stach C, Zwerina J, Voll R, Manger B. How antirheumatic drugs protect joints from damage in rheumatoid arthritis. Arthritis Rheumatol. 2008;58(10):2936–48.  https://doi.org/10.1002/art.23951.Google Scholar
  22. 22.
    Schett G, Saag KG, Bijlsma JW. From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis. 2010;69(8):1415–9.  https://doi.org/10.1136/ard.2010.135061.Google Scholar
  23. 23.
    Konijn NP, van Tuyl LH, Bultink IE, Lems WF, Earthman CP, van Bokhorst-de van der Schueren MA. Making the invisible visible: bioelectrical impedance analysis demonstrates unfavourable body composition in rheumatoid arthritis patients in clinical practice. Scand J Rheumatol. 2014;43(4):273–8.  https://doi.org/10.3109/03009742.2013.852239.Google Scholar
  24. 24.
    Spanjer MJ, Bultink IEM, de van der Schueren MAE, Voskuyl AE. Prevalence of malnutrition and validation of bioelectrical impedance analysis for the assessment of body composition in patients with systemic sclerosis. Rheumatology (Oxford). 2017;56(6):1008–12.  https://doi.org/10.1093/rheumatology/kex014.Google Scholar
  25. 25.
    Lems WF, Baak MM, van Tuyl LH, Lodder MC, Dijkmans BA, Boers M. One-year effects of glucocorticoids on bone density: a meta-analysis in cohorts on high and low-dose therapy. RMD Open. 2016;2(2):e000313.  https://doi.org/10.1136/rmdopen-2016-000313.Google Scholar
  26. 26.
    Saag KG, Wagman RB, Geusens P, Adachi JD, Messina OD, Emkey R, et al. Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol. 2018;6(6):445–54.  https://doi.org/10.1016/S2213-8587(18)30075-5.Google Scholar
  27. 27.
    Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028–39.  https://doi.org/10.1056/NEJMoa071408.Google Scholar
  28. 28.
    Vayssiere BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol. 1997;11(9):1245–55.  https://doi.org/10.1210/mend.11.9.9979.Google Scholar
  29. 29.
    McKay LI, Cidlowski JA. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol. 1998;12(1):45–56.  https://doi.org/10.1210/mend.12.1.0044.Google Scholar
  30. 30.
    Buttgereit F, Straub RH, Wehling M, Burmester GR. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheumatol. 2004;50(11):3408–17.  https://doi.org/10.1002/art.20583.Google Scholar
  31. 31.
    O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.  https://doi.org/10.1210/en.2003-0990.Google Scholar
  32. 32.
    Liu Y, Porta A, Peng X, Gengaro K, Cunningham EB, Li H, et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res. 2004;19(3):479–90.  https://doi.org/10.1359/JBMR.0301242.Google Scholar
  33. 33.
    Yun SI, Yoon HY, Jeong SY, Chung YS. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab. 2009;27(2):140–8.  https://doi.org/10.1007/s00774-008-0019-5.Google Scholar
  34. 34.
    Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun. 2005;329(1):177–81.  https://doi.org/10.1016/j.bbrc.2005.01.117.Google Scholar
  35. 35.
    Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology. 2008;149(4):1793–801.  https://doi.org/10.1210/en.2007-0910.Google Scholar
  36. 36.
    Butler JS, Queally JM, Devitt BM, Murray DW, Doran PP, O’Byrne JM. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. BMC Musculoskelet Disord. 2010;11:210.  https://doi.org/10.1186/1471-2474-11-210.Google Scholar
  37. 37.
    Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone. 2002;30(5):685–91.Google Scholar
  38. 38.
    Shi XM, Blair HC, Yang X, McDonald JM, Cao X. Tandem repeat of C/EBP binding sites mediates PPARgamma2 gene transcription in glucocorticoid-induced adipocyte differentiation. J Cell Biochem. 2000;76(3):518–27.Google Scholar
  39. 39.
    Carcamo-Orive I, Gaztelumendi A, Delgado J, Tejados N, Dorronsoro A, Fernandez-Rueda J, et al. Regulation of human bone marrow stromal cell proliferation and differentiation capacity by glucocorticoid receptor and AP-1 crosstalk. J Bone Miner Res. 2010;25(10):2115–25.  https://doi.org/10.1002/jbmr.120.Google Scholar
  40. 40.
    Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.  https://doi.org/10.1210/endo.140.10.7034.Google Scholar
  41. 41.
    Kondo T, Kitazawa R, Yamaguchi A, Kitazawa S. Dexamethasone promotes osteoclastogenesis by inhibiting osteoprotegerin through multiple levels. J Cell Biochem. 2008;103(1):335–45.  https://doi.org/10.1002/jcb.21414.Google Scholar
  42. 42.
    Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, et al. Glucocorticoids suppress bone formation via the osteoclast. J Clin Investig. 2006;116(8):2152–60.  https://doi.org/10.1172/JCI28084.Google Scholar
  43. 43.
    Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45(10):2163–72.  https://doi.org/10.1016/j.biocel.2013.05.036.Google Scholar
  44. 44.
    Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res. 2005;20(5):721–9.  https://doi.org/10.1359/JBMR.041230.Google Scholar
  45. 45.
    Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:CD007146.  https://doi.org/10.1002/14651858.CD007146.pub3.Google Scholar
  46. 46.
    Reginster JY, Kuntz D, Verdickt W, Wouters M, Guillevin L, Menkes CJ, et al. Prophylactic use of alfacalcidol in corticosteroid-induced osteoporosis. Osteoporos Int. 1999;9(1):75–81.Google Scholar
  47. 47.
    Amin S, LaValley MP, Simms RW, Felson DT. The role of vitamin D in corticosteroid-induced osteoporosis: a meta-analytic approach. Arthritis Rheumatol. 1999;42(8):1740–51.  https://doi.org/10.1002/1529-0131(199908)42:8%3c1740:AID-ANR25%3e3.0.CO;2-E.Google Scholar
  48. 48.
    Homik J, Suarez-Almazor ME, Shea B, Cranney A, Wells G, Tugwell P. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database Syst Rev. 2000;2:CD000952.  https://doi.org/10.1002/14651858.CD000952.Google Scholar
  49. 49.
    Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, et al. 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017;69(8):1521–37.  https://doi.org/10.1002/art.40137.Google Scholar
  50. 50.
    Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1(1):e000014.  https://doi.org/10.1136/rmdopen-2014-000014.Google Scholar
  51. 51.
    Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res. 2007;22(11):1668–71.  https://doi.org/10.1359/jbmr.070716.Google Scholar
  52. 52.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009;339:b3692.  https://doi.org/10.1136/bmj.b3692.Google Scholar
  53. 53.
    Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA, et al. A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med. 2012;367(1):40–9.  https://doi.org/10.1056/NEJMoa1109617.Google Scholar
  54. 54.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22.  https://doi.org/10.1001/jama.2010.594.Google Scholar
  55. 55.
    Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83.  https://doi.org/10.1001/jamainternmed.2015.7148.Google Scholar
  56. 56.
    Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66.  https://doi.org/10.1016/S0140-6736(07)61342-7.Google Scholar
  57. 57.
    Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgstrom F, et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int. 2012;23(9):2257–76.  https://doi.org/10.1007/s00198-012-1958-1.Google Scholar
  58. 58.
    Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgstrom F, et al. An appendix to the 2012 IOF-ECTS guidelines for the management of glucocorticoid-induced osteoporosis. Arch Osteoporos. 2012;7:25–30.  https://doi.org/10.1007/s11657-012-0070-7.Google Scholar
  59. 59.
    Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43.  https://doi.org/10.1007/s11657-017-0324-5.Google Scholar
  60. 60.
    Hoes JN, Jacobs JW, Boers M, Boumpas D, Buttgereit F, Caeyers N, et al. EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis. 2007;66(12):1560–7.  https://doi.org/10.1136/ard.2007.072157.Google Scholar
  61. 61.
    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.  https://doi.org/10.1007/s00198-014-2794-2.Google Scholar
  62. 62.
    Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45.  https://doi.org/10.4065/83.9.1032.Google Scholar
  63. 63.
    Russell RG, Muhlbauer RC, Bisaz S, Williams DA, Fleisch H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res. 1970;6(3):183–96.Google Scholar
  64. 64.
    Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10(10):1478–87.  https://doi.org/10.1002/jbmr.5650101008.Google Scholar
  65. 65.
    Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res. 1996;11(2):150–9.  https://doi.org/10.1002/jbmr.5650110203.Google Scholar
  66. 66.
    Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Investig. 1999;104(10):1363–74.  https://doi.org/10.1172/JCI6800.Google Scholar
  67. 67.
    Sharpe M, Noble S, Spencer CM. Alendronate: an update of its use in osteoporosis. Drugs. 2001;61(7):999–1039.  https://doi.org/10.2165/00003495-200161070-00010.Google Scholar
  68. 68.
    Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 1999;96(1):133–8.Google Scholar
  69. 69.
    Keller RK, Fliesler SJ. Mechanism of aminobisphosphonate action: characterization of alendronate inhibition of the isoprenoid pathway. Biochem Biophys Res Commun. 1999;266(2):560–3.  https://doi.org/10.1006/bbrc.1999.1849.Google Scholar
  70. 70.
    Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys. 2000;373(1):231–41.  https://doi.org/10.1006/abbi.1999.1502.Google Scholar
  71. 71.
    Jeal W, Barradell LB, McTavish D. Alendronate. A review of its pharmacological properties and therapeutic efficacy in postmenopausal osteoporosis. Drugs. 1997;53(3):415–34.  https://doi.org/10.2165/00003495-199753030-00006.Google Scholar
  72. 72.
    Shiraki M, Kushida K, Fukunaga M, Kishimoto H, Taga M, Nakamura T, et al. A double-masked multicenter comparative study between alendronate and alfacalcidol in Japanese patients with osteoporosis. The Alendronate Phase III Osteoporosis Treatment Research Group. Osteoporos Int. 1999;10(3):183–92.Google Scholar
  73. 73.
    Downs RW Jr, Bell NH, Ettinger MP, Walsh BW, Favus MJ, Mako B, et al. Comparison of alendronate and intranasal calcitonin for treatment of osteoporosis in postmenopausal women. J Clin Endocrinol Metab. 2000;85(5):1783–8.  https://doi.org/10.1210/jcem.85.5.6606.Google Scholar
  74. 74.
    Bettica P, Bevilacqua M, Vago T, Masino M, Cucinotta E, Norbiato G. Short-term variations in bone remodeling biochemical markers: cyclical etidronate and alendronate effects compared. J Clin Endocrinol Metab. 1997;82(9):3034–9.  https://doi.org/10.1210/jcem.82.9.4193.Google Scholar
  75. 75.
    Lindsay R, Cosman F, Lobo RA, Walsh BW, Harris ST, Reagan JE, et al. Addition of alendronate to ongoing hormone replacement therapy in the treatment of osteoporosis: a randomized, controlled clinical trial. J Clin Endocrinol Metab. 1999;84(9):3076–81.  https://doi.org/10.1210/jcem.84.9.5989.Google Scholar
  76. 76.
    Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998;339(5):292–9.  https://doi.org/10.1056/NEJM199807303390502.Google Scholar
  77. 77.
    Rosen CB, Mako B, et al. Alendronate and calcium for treatment of osteoporosis in postmenopausal women: effect on biochemical markers of bone turnover [abstract]. In: Endocrine Society’s 81st annual meeting; 1999.Google Scholar
  78. 78.
    Dunn CJ, Goa KL. Risedronate: a review of its pharmacological properties and clinical use in resorptive bone disease. Drugs. 2001;61(5):685–712.  https://doi.org/10.2165/00003495-200161050-00013.Google Scholar
  79. 79.
    Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344–52.Google Scholar
  80. 80.
    Fogelman I, Ribot C, Smith R, Ethgen D, Sod E, Reginster JY. Risedronate reverses bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trial. BMD-MN Study Group. J Clin Endocrinol Metab. 2000;85(5):1895–900.  https://doi.org/10.1210/jcem.85.5.6603.Google Scholar
  81. 81.
    Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int. 2000;11(1):83–91.Google Scholar
  82. 82.
    Eriksen EFB, Boling, E, et al. Beneficial effects of risedronate in corticosteroid-treated patients: histology and histomorphometry [abstract]. Bone. 1998;23(5 suppl):S403.Google Scholar
  83. 83.
    Li EC, Davis LE. Zoledronic acid: a new parenteral bisphosphonate. Clin Ther. 2003;25(11):2669–708.Google Scholar
  84. 84.
    Deeks ED, Perry CM. Zoledronic acid: a review of its use in the treatment of osteoporosis. Drugs Aging. 2008;25(11):963–86.  https://doi.org/10.2165/0002512-200825110-00007.Google Scholar
  85. 85.
    Dhillon S. Zoledronic acid (Reclast((R)), Aclasta((R))): a review in osteoporosis. Drugs. 2016;76(17):1683–97.  https://doi.org/10.1007/s40265-016-0662-4.Google Scholar
  86. 86.
    Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, et al. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone. 2006;38(5):617–27.  https://doi.org/10.1016/j.bone.2005.05.003.Google Scholar
  87. 87.
    Russell RG. Bisphosphonates: from bench to bedside. Ann N Y Acad Sci. 2006;1068:367–401.  https://doi.org/10.1196/annals.1346.041.Google Scholar
  88. 88.
    Coxon FP, Helfrich MH, Van’t Hof R, Sebti S, Ralston SH, Hamilton A, et al. Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res. 2000;15(8):1467–76.  https://doi.org/10.1359/jbmr.2000.15.8.1467.Google Scholar
  89. 89.
    Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther. 2001;296(2):235–42.Google Scholar
  90. 90.
    Rondeau JM, Bitsch F, Bourgier E, Geiser M, Hemmig R, Kroemer M, et al. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem. 2006;1(2):267–73.  https://doi.org/10.1002/cmdc.200500059.Google Scholar
  91. 91.
    Kunzmann V, Bauer E, Wilhelm M. Gamma/delta T-cell stimulation by pamidronate. N Engl J Med. 1999;340(9):737–8.  https://doi.org/10.1056/NEJM199903043400914.Google Scholar
  92. 92.
    Roelofs AJ, Jauhiainen M, Monkkonen H, Rogers MJ, Monkkonen J, Thompson K. Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol. 2009;144(2):245–50.  https://doi.org/10.1111/j.1365-2141.2008.07435.x.Google Scholar
  93. 93.
    Delmas PD, Munoz F, Black DM, Cosman F, Boonen S, Watts NB, et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24(9):1544–51.  https://doi.org/10.1359/jbmr.090310.Google Scholar
  94. 94.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.  https://doi.org/10.1056/NEJMoa067312.Google Scholar
  95. 95.
    Black DM, Reid IR, Boonen S, Bucci-Rechtweg C, Cauley JA, Cosman F, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(2):243–54.  https://doi.org/10.1002/jbmr.1494.Google Scholar
  96. 96.
    Black DM, Reid IR, Cauley JA, Cosman F, Leung PC, Lakatos P, et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2015;30(5):934–44.  https://doi.org/10.1002/jbmr.2442.Google Scholar
  97. 97.
    Frampton JE, Perry CM. Ibandronate: a review of its use in the management of postmenopausal osteoporosis. Drugs. 2008;68(18):2683–707.  https://doi.org/10.2165/0003495-200868180-00011.Google Scholar
  98. 98.
    Chesnut CH. Treating osteoporosis with bisphosphonates and addressing adherence: a review of oral ibandronate. Drugs. 2006;66(10):1351–9.  https://doi.org/10.2165/00003495-200666100-00004.Google Scholar
  99. 99.
    Croom KF, Scott LJ. Intravenous ibandronate: in the treatment of osteoporosis. Drugs. 2006;66(12):1593–601.  https://doi.org/10.2165/00003495-200666120-00005 (discussion 602–3).Google Scholar
  100. 100.
    Hakala M, Kroger H, Valleala H, Hienonen-Kempas T, Lehtonen-Veromaa M, Heikkinen J, et al. Once-monthly oral ibandronate provides significant improvement in bone mineral density in postmenopausal women treated with glucocorticoids for inflammatory rheumatic diseases: a 12-month, randomized, double-blind, placebo-controlled trial. Scand J Rheumatol. 2012;41(4):260–6.  https://doi.org/10.3109/03009742.2012.664647.Google Scholar
  101. 101.
    Fitton A, McTavish D. Pamidronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs. 1991;41(2):289–318.  https://doi.org/10.2165/00003495-199141020-00009.Google Scholar
  102. 102.
    Boutsen Y, Jamart J, Esselinckx W, Devogelaer JP. Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3 months, and calcium alone. J Bone Miner Res. 2001;16(1):104–12.  https://doi.org/10.1359/jbmr.2001.16.1.104.Google Scholar
  103. 103.
    Lodder MC, Van Pelt PA, Lems WF, Kostense PJ, Koks CH, Dijkmans BA. Effects of high dose IV pamidronate on disease activity and bone metabolism in patients with active RA: a randomized, double-blind, placebo-controlled trial. J Rheumatol. 2003;30(9):2080–1.Google Scholar
  104. 104.
    Dunn CJ, Fitton A, Sorkin EM. Etidronic acid. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs Aging. 1994;5(6):446–74.  https://doi.org/10.2165/00002512-199405060-00006.Google Scholar
  105. 105.
    Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet. 1999;36(5):315–28.  https://doi.org/10.2165/00003088-199936050-00002.Google Scholar
  106. 106.
    Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Freeman A, Quan H, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther. 1995;58(3):288–98.  https://doi.org/10.1016/0009-9236(95)90245-7.Google Scholar
  107. 107.
    Europeanmedicinesagency. Fosavance (alendronic acid/colecalciferol): summary of product characteristics; 2018. http://www.ema.europa.eu.
  108. 108.
    Khan SA, Kanis JA, Vasikaran S, Kline WF, Matuszewski BK, McCloskey EV, et al. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res. 1997;12(10):1700–7.  https://doi.org/10.1359/jbmr.1997.12.10.1700.Google Scholar
  109. 109.
    Mitchell DY, Eusebio RA, Sacco-Gibson NA, Pallone KA, Kelly SC, Nesbitt JD, et al. Dose-proportional pharmacokinetics of risedronate on single-dose oral administration to healthy volunteers. J Clin Pharmacol. 2000;40(3):258–65.Google Scholar
  110. 110.
    Mitchell DYB, W.H.; Eusebio, R.A. Determination of intravenous pharmacokinetics, absolute and relative bioavailability, and intra- and intersubject variability of risedronate using a four period replicate study design [abstract no. 3444]. Pharm Res. 1997(14):S-610.Google Scholar
  111. 111.
    Mitchell DY, St Peter JV, Eusebio RA, Pallone KA, Kelly SC, Russell DA, et al. Effect of renal function on risedronate pharmacokinetics after a single oral dose. Br J Clin Pharmacol. 2000;49(3):215–22.Google Scholar
  112. 112.
    Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol. 2002;42(11):1228–36.Google Scholar
  113. 113.
    Skerjanec A, Berenson J, Hsu C, Major P, Miller WH Jr, Ravera C, et al. The pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with varying degrees of renal function. J Clin Pharmacol. 2003;43(2):154–62.Google Scholar
  114. 114.
    European Medicines Agency. Aclasta (zoledronic acid): summary of product characteristics; 2016. http://www.ema.europa.eu. Accessed 1 Sept 2018.
  115. 115.
    Boonen S, Sellmeyer DE, Lippuner K, Orlov-Morozov A, Abrams K, Mesenbrink P, et al. Renal safety of annual zoledronic acid infusions in osteoporotic postmenopausal women. Kidney Int. 2008;74(5):641–8.  https://doi.org/10.1038/ki.2008.193.Google Scholar
  116. 116.
    European Medicines Agency. Bonviva (ibandronate): summary of product characteristics 2018; 2009. https://www.ema.europa.eu/en/medicines/human/EPAR/bonviva#product-information-section.
  117. 117.
    Reginster JY, Neuprez A, Bruyere O. Ibandronate in profile: drug characteristics and clinical efficacy. Expert Opin Drug Metab Toxicol. 2008;4(7):941–51.  https://doi.org/10.1517/17425255.4.7.941.Google Scholar
  118. 118.
    Barrett J, Worth E, Bauss F, Epstein S. Ibandronate: a clinical pharmacological and pharmacokinetic update. J Clin Pharmacol. 2004;44(9):951–65.  https://doi.org/10.1177/0091270004267594.Google Scholar
  119. 119.
    European Medicines Agency. Pamifos (pamidronate): summary of product characteristics; 2017. https://www.ema.europa.eu/. Accessed Sept 2018.
  120. 120.
    Allen CS, Yeung JH, Vandermeer B, Homik J. Bisphosphonates for steroid-induced osteoporosis. Cochrane Database Syst Rev. 2016;10:CD001347.  https://doi.org/10.1002/14651858.cd001347.pub2.Google Scholar
  121. 121.
    Bultink IE, Baden M, Lems WF. Glucocorticoid-induced osteoporosis: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother. 2013;14(2):185–97.  https://doi.org/10.1517/14656566.2013.761975.Google Scholar
  122. 122.
    Abitbol V, Briot K, Roux C, Roy C, Seksik P, Charachon A, et al. A double-blind placebo-controlled study of intravenous clodronate for prevention of steroid-induced bone loss in inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007;5(10):1184–9.  https://doi.org/10.1016/j.cgh.2007.05.016.Google Scholar
  123. 123.
    Adachi JD, Bensen WG, Brown J, Hanley D, Hodsman A, Josse R, et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N Engl J Med. 1997;337(6):382–7.  https://doi.org/10.1056/NEJM199708073370603.Google Scholar
  124. 124.
    Boutsen Y, Jamart J, Esselinckx W, Stoffel M, Devogelaer JP. Primary prevention of glucocorticoid-induced osteoporosis with intermittent intravenous pamidronate: a randomized trial. Calcif Tissue Int. 1997;61(4):266–71.Google Scholar
  125. 125.
    Cortet B, Hachulla E, Barton I, Bonvoisin B, Roux C. Evaluation of the efficacy of etidronate therapy in preventing glucocorticoid-induced bone loss in patients with inflammatory rheumatic diseases. A randomized study. Rev Rhum Engl Ed. 1999;66(4):214–9.Google Scholar
  126. 126.
    de Nijs RN, Jacobs JW, Lems WF, Laan RF, Algra A, Huisman AM, et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med. 2006;355(7):675–84.  https://doi.org/10.1056/NEJMoa053569.Google Scholar
  127. 127.
    Frediani B, Falsetti P, Baldi F, Acciai C, Filippou G, Marcolongo R. Effects of 4-year treatment with once-weekly clodronate on prevention of corticosteroid-induced bone loss and fractures in patients with arthritis: evaluation with dual-energy X-ray absorptiometry and quantitative ultrasound. Bone. 2003;33(4):575–81.Google Scholar
  128. 128.
    Geusens P, Dequeker J, Vanhoof J, Stalmans R, Boonen S, Joly J, et al. Cyclical etidronate increases bone density in the spine and hip of postmenopausal women receiving long term corticosteroid treatment. A double blind, randomised placebo controlled study. Ann Rheum Dis. 1998;57(12):724–7.Google Scholar
  129. 129.
    Herrala J, Puolijoki H, Liippo K, Raitio M, Impivaara O, Tala E, et al. Clodronate is effective in preventing corticosteroid-induced bone loss among asthmatic patients. Bone. 1998;22(5):577–82.Google Scholar
  130. 130.
    Jenkins EA, Walker-Bone KE, Wood A, McCrae FC, Cooper C, Cawley MI. The prevention of corticosteroid-induced bone loss with intermittent cyclical etidronate. Scand J Rheumatol. 1999;28(3):152–6.Google Scholar
  131. 131.
    Lems WF, Lodder MC, Lips P, Bijlsma JW, Geusens P, Schrameijer N, et al. Positive effect of alendronate on bone mineral density and markers of bone turnover in patients with rheumatoid arthritis on chronic treatment with low-dose prednisone: a randomized, double-blind, placebo-controlled trial. Osteoporos Int. 2006;17(5):716–23.  https://doi.org/10.1007/s00198-005-0037-2.Google Scholar
  132. 132.
    Li EK, Zhu TY, Hung VY, Kwok AW, Lee VW, Lee KK, et al. Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther. 2010;12(5):R198.  https://doi.org/10.1186/ar3170.Google Scholar
  133. 133.
    Pitt P, Li F, Todd P, Webber D, Pack S, Moniz C. A double blind placebo controlled study to determine the effects of intermittent cyclical etidronate on bone mineral density in patients on long-term oral corticosteroid treatment. Thorax. 1998;53(5):351–6.Google Scholar
  134. 134.
    Reid DM, Hughes RA, Laan RF, Sacco-Gibson NA, Wenderoth DH, Adami S, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res. 2000;15(6):1006–13.  https://doi.org/10.1359/jbmr.2000.15.6.1006.Google Scholar
  135. 135.
    Roux C, Oriente P, Laan R, Hughes RA, Ittner J, Goemaere S, et al. Randomized trial of effect of cyclical etidronate in the prevention of corticosteroid-induced bone loss. Ciblos Study Group. J Clin Endocrinol Metab. 1998;83(4):1128–33.  https://doi.org/10.1210/jcem.83.4.4742.Google Scholar
  136. 136.
    Skingle SJ, Moore DJ, Crisp AJ. Cyclical etidronate increases lumbar spine bone density in patients on long-term glucocorticosteroid therapy. Int J Clin Pract. 1997;51(6):364–7.Google Scholar
  137. 137.
    Stoch SA, Saag KG, Greenwald M, Sebba AI, Cohen S, Verbruggen N, et al. Once-weekly oral alendronate 70 mg in patients with glucocorticoid-induced bone loss: a 12-month randomized, placebo-controlled clinical trial. J Rheumatol. 2009;36(8):1705–14.  https://doi.org/10.3899/jrheum.081207.Google Scholar
  138. 138.
    Van Offel JF, Schuerwegh AJ, Bridts CH, Bracke PG, Stevens WJ, De Clerck LS. Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin Exp Rheumatol. 2001;19(1):13–20.Google Scholar
  139. 139.
    Wolfhagen FH, van Buuren HR, den Ouden JW, Hop WC, van Leeuwen JP, Schalm SW, et al. Cyclical etidronate in the prevention of bone loss in corticosteroid-treated primary biliary cirrhosis. A prospective, controlled pilot study. J Hepatol. 1997;26(2):325–30.Google Scholar
  140. 140.
    Yeap SS, Fauzi AR, Kong NC, Halim AG, Soehardy Z, Rahimah I, et al. A comparison of calcium, calcitriol, and alendronate in corticosteroid-treated premenopausal patients with systemic lupus erythematosus. J Rheumatol. 2008;35(12):2344–7.  https://doi.org/10.3899/jrheum.080634.Google Scholar
  141. 141.
    Sambrook PN, Kotowicz M, Nash P, Styles CB, Naganathan V, Henderson-Briffa KN, et al. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J Bone Miner Res. 2003;18(5):919–24.  https://doi.org/10.1359/jbmr.2003.18.5.919.Google Scholar
  142. 142.
    Tee SI, Yosipovitch G, Chan YC, Chua SH, Koh ET, Chan YH, et al. Prevention of glucocorticoid-induced osteoporosis in immunobullous diseases with alendronate: a randomized, double-blind, placebo-controlled study. Arch Dermatol. 2012;148(3):307–14.  https://doi.org/10.1001/archdermatol.2011.354.Google Scholar
  143. 143.
    Thomas T, Horlait S, Ringe JD, Abelson A, Gold DT, Atlan P, et al. Oral bisphosphonates reduce the risk of clinical fractures in glucocorticoid-induced osteoporosis in clinical practice. Osteoporos Int. 2013;24(1):263–9.  https://doi.org/10.1007/s00198-012-2060-4.Google Scholar
  144. 144.
    Amiche MA, Levesque LE, Gomes T, Adachi JD, Cadarette SM. Effectiveness of oral bisphosphonates in reducing fracture risk among oral glucocorticoid users: three matched cohort analyses. J Bone Miner Res. 2018;33(3):419–29.  https://doi.org/10.1002/jbmr.3318.Google Scholar
  145. 145.
    Bergman J, Nordstrom A, Nordstrom P. Alendronate use and the risk of nonvertebral fracture during glucocorticoid therapy: a retrospective cohort study. J Clin Endocrinol Metab. 2018;103(1):306–13.  https://doi.org/10.1210/jc.2017-01912.Google Scholar
  146. 146.
    Saadati NR. The effect of bisphosphonate on prevention of glucocorticoid-induced osteoporosis. Iran Red Crescent Med J. 2008;10(1):292–9.Google Scholar
  147. 147.
    Axelsson KF, Nilsson AG, Wedel H, Lundh D, Lorentzon M. Association between alendronate use and hip fracture risk in older patients using oral prednisolone. JAMA. 2017;318(2):146–55.  https://doi.org/10.1001/jama.2017.8040.Google Scholar
  148. 148.
    Teitelbaum SL, Seton MP, Saag KG. Should bisphosphonates be used for long-term treatment of glucocorticoid-induced osteoporosis? Arthritis Rheumatol. 2011;63(2):325–8.  https://doi.org/10.1002/art.30135.Google Scholar
  149. 149.
    Pazianas M, Abrahamsen B. Safety of bisphosphonates. Bone. 2011;49(1):103–10.  https://doi.org/10.1016/j.bone.2011.01.003.Google Scholar
  150. 150.
    Abrahamsen B, Eiken P, Prieto-Alhambra D, Eastell R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case–control study. BMJ. 2016;353:i3365.  https://doi.org/10.1136/bmj.i3365.Google Scholar
  151. 151.
    Lee S, Yin RV, Hirpara H, Lee NC, Lee A, Llanos S, et al. Increased risk for atypical fractures associated with bisphosphonate use. Fam Pract. 2015;32(3):276–81.  https://doi.org/10.1093/fampra/cmu088.Google Scholar
  152. 152.
    Sambrook PN. Anabolic therapy in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2084–6.  https://doi.org/10.1056/NEJMe0706770.Google Scholar
  153. 153.
    Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Investig. 1998;102(8):1627–33.  https://doi.org/10.1172/jci3914.Google Scholar
  154. 154.
    Blumsohn A, Marin F, Nickelsen T, Brixen K, Sigurdsson G, Gonzalez de la Vera J, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int. 2011;22(6):1935–46.  https://doi.org/10.1007/s00198-010-1379-y.Google Scholar
  155. 155.
    Cosman F, Nieves JW, Zion M, Garrett P, Neubort S, Dempster D, et al. Daily or cyclical teriparatide treatment in women with osteoporosis on no prior therapy and women on alendronate. J Clin Endocrinol Metab. 2015;100(7):2769–76.  https://doi.org/10.1210/jc.2015-1715.Google Scholar
  156. 156.
    Cosman F, Nieves JW, Roimisher C, Neubort S, McMahon DJ, Dempster DW, et al. Administration of teriparatide for four years cyclically compared to two years daily in treatment Naive and alendronate treated women. Bone. 2018;120:246–53.  https://doi.org/10.1016/j.bone.2018.10.020.Google Scholar
  157. 157.
    Satterwhite J, Heathman M, Miller PD, Marin F, Glass EV, Dobnig H. Pharmacokinetics of teriparatide (rhPTH[1–34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif Tissue Int. 2010;87(6):485–92.  https://doi.org/10.1007/s00223-010-9424-6.Google Scholar
  158. 158.
    Wallach S, Cohen S, Reid DM, Hughes RA, Hosking DJ, Laan RF, et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tissue Int. 2000;67(4):277–85.Google Scholar
  159. 159.
    Saag KG, Zanchetta JR, Devogelaer JP, Adler RA, Eastell R, See K, et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheumatol. 2009;60(11):3346–55.  https://doi.org/10.1002/art.24879.Google Scholar
  160. 160.
    Karras D, Stoykov I, Lems WF, Langdahl BL, Ljunggren O, Barrett A, et al. Effectiveness of teriparatide in postmenopausal women with osteoporosis and glucocorticoid use: 3-year results from the EFOS study. J Rheumatol. 2012;39(3):600–9.  https://doi.org/10.3899/jrheum.110947.Google Scholar
  161. 161.
    Tastekin N, Zateri C, et al. Probable osteosarcoma risk after prolonged teriparatide treatment: comment on the article by Saag et al. Arthritis Rheumatol. 2010;62(6):1837.  https://doi.org/10.1002/art.27427 (author reply -8).Google Scholar
  162. 162.
    Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH, et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res. 2012;27(12):2429–37.  https://doi.org/10.1002/jbmr.1768.Google Scholar
  163. 163.
    Miller PD. A review of the efficacy and safety of denosumab in postmenopausal women with osteoporosis. Ther Adv Musculoskelet Dis. 2011;3(6):271–82.  https://doi.org/10.1177/1759720X11424220.Google Scholar
  164. 164.
    Lewiecki EM. New and emerging concepts in the use of denosumab for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2018;10(11):209–23.  https://doi.org/10.1177/1759720X18805759.Google Scholar
  165. 165.
    Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66.  https://doi.org/10.1359/JBMR.040305.Google Scholar
  166. 166.
    Cummings SR, San MJ, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.  https://doi.org/10.1056/NEJMoa0809493.Google Scholar
  167. 167.
    Iseri K, Iyoda M, Watanabe M, Matsumoto K, Sanada D, Inoue T, et al. The effects of denosumab and alendronate on glucocorticoid-induced osteoporosis in patients with glomerular disease: a randomized, controlled trial. PLoS One. 2018;13(3):e0193846.  https://doi.org/10.1371/journal.pone.0193846.Google Scholar
  168. 168.
    Anastasilakis AD, Toulis KA, Goulis DG, Polyzos SA, Delaroudis S, Giomisi A, et al. Efficacy and safety of denosumab in postmenopausal women with osteopenia or osteoporosis: a systematic review and a meta-analysis. Horm Metab Res. 2009;41(10):721–9.  https://doi.org/10.1055/s-0029-1224109.Google Scholar
  169. 169.
    Toulis KA, Anastasilakis AD. Increased risk of serious infections in women with osteopenia or osteoporosis treated with denosumab. Osteoporos Int. 2010;21(11):1963–4.  https://doi.org/10.1007/s00198-009-1145-1.Google Scholar
  170. 170.
    Curtis JR, Xie F, Yun H, Saag KG, Chen L, Delzell E. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol. 2015;67(6):1456–64.  https://doi.org/10.1002/art.39075.Google Scholar
  171. 171.
    Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical femur fractures—review of epidemiology, relationship to bisphosphonates, prevention and clinical management. Endocr Rev. 2018.  https://doi.org/10.1210/er.2018-00001.Google Scholar
  172. 172.
    Cummings SR, Ferrari S, Eastell R, Gilchrist N, Jensen JB, McClung M, et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res. 2018;33(2):190–8.  https://doi.org/10.1002/jbmr.3337.Google Scholar
  173. 173.
    Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guanabens N, et al. Discontinuation of denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone. 2017;105:11–7.  https://doi.org/10.1016/j.bone.2017.08.003.Google Scholar
  174. 174.
    Green SB, Pappas AL. Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Health Syst Pharm. 2014;71(23):2029–36.  https://doi.org/10.2146/ajhp140041.Google Scholar
  175. 175.
    Levy S, Fayez I, Taguchi N, Han JY, Aiello J, Matsui D, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44(3):428–30.  https://doi.org/10.1016/j.bone.2008.11.001.Google Scholar
  176. 176.
    Boyce RW, Varela A, Chouinard L, Bussiere JL, Chellman GJ, Ominsky MS, et al. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period. Bone. 2014;64:314–25.  https://doi.org/10.1016/j.bone.2014.04.002.Google Scholar
  177. 177.
    Bliuc D, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 2015;30(4):637–46.  https://doi.org/10.1002/jbmr.2393.Google Scholar
  178. 178.
    Gluer CC, Marin F, Ringe JD, Hawkins F, Moricke R, Papaioannu N, et al. Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J Bone Miner Res. 2013;28(6):1355–68.  https://doi.org/10.1002/jbmr.1870.Google Scholar
  179. 179.
    Farahmand P, Marin F, Hawkins F, Moricke R, Ringe JD, Gluer CC, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24(12):2971–81.  https://doi.org/10.1007/s00198-013-2379-5.Google Scholar
  180. 180.
    Gough AK, Lilley J, Eyre S, Holder RL, Emery P. Generalised bone loss in patients with early rheumatoid arthritis. Lancet. 1994;344(8914):23–7.Google Scholar
  181. 181.
    Eekman DA, Vis M, Bultink IE, Kuik DJ, Voskuyl AE, Dijkmans BA, et al. Stable bone mineral density in lumbar spine and hip in contrast to bone loss in the hands during long-term treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(2):389–90.  https://doi.org/10.1136/ard.2009.127787.Google Scholar
  182. 182.
    Vis M, Havaardsholm EA, Haugeberg G, Uhlig T, Voskuyl AE, van de Stadt RJ, et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(11):1495–9.  https://doi.org/10.1136/ard.2005.044198.Google Scholar
  183. 183.
    Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF. Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford). 2013;52(3):547–53.  https://doi.org/10.1093/rheumatology/kes320.Google Scholar
  184. 184.
    Curtis JR, Westfall AO, Allison JJ, Becker A, Casebeer L, Freeman A, et al. Longitudinal patterns in the prevention of osteoporosis in glucocorticoid-treated patients. Arthritis Rheumatol. 2005;52(8):2485–94.  https://doi.org/10.1002/art.21194.Google Scholar
  185. 185.
    Silverman S, Curtis J, Saag K, Flahive J, Adachi J, Anderson F, et al. International management of bone health in glucocorticoid-exposed individuals in the observational GLOW study. Osteoporos Int. 2015;26(1):419–20.  https://doi.org/10.1007/s00198-014-2883-2.Google Scholar
  186. 186.
    Klop C, de Vries F, Vinks T, Kooij MJ, van Staa TP, Bijlsma JW, et al. Increase in prophylaxis of glucocorticoid-induced osteoporosis by pharmacist feedback: a randomised controlled trial. Osteoporos Int. 2014;25(1):385–92.  https://doi.org/10.1007/s00198-013-2562-8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RheumatologyNoordwest ZiekenhuisgroepAlkmaarThe Netherlands
  2. 2.Department of RheumatologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Rheumatology and immunology CenterAmsterdamThe Netherlands
  3. 3.Department of RheumatologyAmsterdam Rheumatology and Immunology Center, Location ReadeAmsterdamThe Netherlands

Personalised recommendations