Skip to main content
Log in

Alectinib: A Review in Advanced, ALK-Positive NSCLC

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Alectinib (Alecensa®) is a potent and highly selective anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor. Oral alectinib monotherapy is approved in the EU as first-line treatment for adults with advanced ALK-positive non-small cell lung cancer (NSCLC) and for the treatment of adults with advanced ALK-positive NSCLC previously treated with crizotinib. In the USA, alectinib is indicated for the treatment of adults with ALK-positive metastatic NSCLC. The recommended dosage for alectinib in the EU and USA is 600 mg twice daily. Well-designed phase III studies in patients with ALK-positive NSCLC showed that during up to ≈ 19 months’ follow-up, progression-free survival (PFS) was significantly improved with alectinib relative to crizotinib as first-line therapy (ALEX study), and relative to chemotherapy in patients previously treated with crizotinib and platinum-doublet chemotherapy (ALUR study). Central nervous system (CNS)-related outcomes were significantly improved with alectinib in both these settings. Two phase II registrational studies (NP28673 and NP28761) in patients previously treated with crizotinib also demonstrated the efficacy of alectinib, as assessed by objective response rates (ORRs), during up to 21 months’ follow-up. Overall, alectinib had a manageable tolerability profile in these settings, with most adverse events (AEs) of mild or moderate severity. Current evidence indicates that alectinib is an important treatment option for patients with advanced ALK-positive NSCLC who are previously untreated or those previously treated with crizotinib. Given its efficacy and tolerability, current guidelines include alectinib as a treatment option in these settings, with the NCCN guidelines recommending it as a preferred option for first-line therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hu H, Qing Lin W, Zhu Q, et al. Is there a benefit of first- or second-line crizotinib in locally advanced or metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer? A meta-analysis. Oncotarget. 2016;7(49):81090–8.

    PubMed  PubMed Central  Google Scholar 

  2. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Webb TR, Slavish J, George RE, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009;9(3):331–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sabir SR, Yeoh S, Jackson G, et al. EML4-ALK variants: biological and molecular properties, and the implications for patients. Cancers. 2017. https://doi.org/10.3390/cancers9090118.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Frampton JE. Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs. 2013;73(18):2031–51.

    Article  PubMed  CAS  Google Scholar 

  6. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  PubMed  CAS  Google Scholar 

  7. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.

    Article  PubMed  CAS  Google Scholar 

  8. Novello S, Barlesi F, Califano R, et al. Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(S5):v1–27.

    Article  PubMed  CAS  Google Scholar 

  9. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-small cell lung cancer (version 3.2018). 2018. https://www.nccn.org/. Accessed 30 Apr 2018.

  10. Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Can Res. 2015;21(10):2227–35.

    Article  CAS  Google Scholar 

  11. Shi W, Dicker AP. CNS metastases in patients with non-small-cell lung cancer and ALK gene rearrangement. J Clin Oncol. 2016;34(2):107–9.

    Article  PubMed  CAS  Google Scholar 

  12. Betts K, Song J, Guo J, et al. Real-world treatment patterns and brain metastasis development in ALK-positive non-small cell lung cancer [abstract no. C10]. J Manag Care Spec Pharm. 2016;22(4):S30–1.

    Google Scholar 

  13. European Medicines Agency. Alecensa (alectinib): summary of product characteristics. 2018. http://www.ema.europa.eu. Accessed 2 Mar 2018.

  14. Genentech Inc. Alecensa (alectinib): US prescribing information. 2017. https://www.accessdata.fda.gov/. Accessed 2 Mar 2018.

  15. Sakamoto H, Tsukaguchi T, Hiroshima S, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679–90.

    Article  PubMed  CAS  Google Scholar 

  16. Kodama T, Tsukaguchi T, Satoh Y, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13(12):2910–8.

    Article  PubMed  CAS  Google Scholar 

  17. European Medicines Agency. Alecensa (alectinib): assessment report. 2016. http://www.ema.europa.eu/ema/. Accessed 2 Mar 2018.

  18. Morcos PN, Yu L, Bogman K, et al. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica. 2017;47(3):217–29.

    Article  PubMed  CAS  Google Scholar 

  19. Kodama T, Tsukaguchi T, Yoshida M, et al. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett. 2014;351(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  20. Kodama T, Hasegawa M, Takanashi K, et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023–8.

    Article  PubMed  CAS  Google Scholar 

  21. Isozaki H, Ichihara E, Takigawa N, et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 2016;76(6):1506–16.

    Article  PubMed  CAS  Google Scholar 

  22. Tani T, Yasuda H, Hamamoto J, et al. Activation of EGFR bypass signaling by TGFalpha overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells. Mol Cancer Ther. 2016;15(1):162–71.

    Article  PubMed  CAS  Google Scholar 

  23. Puig O, Yang JCH, Ou SHI, et al. Pooled mutation analysis for the NP28673 and NP28761 studies of alectinib in ALK+ non-small-cell lung cancer (NSCLC) [abstract no. 9061]. J Clin Oncol. 2016;34(15 Suppl):9061.

    Article  Google Scholar 

  24. Katayama R, Friboulet L, Koike S, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 2014;20(22):5686–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kogita A, Togashi Y, Hayashi H, et al. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int J Oncol. 2015;46(3):1025–30.

    Article  PubMed  CAS  Google Scholar 

  26. Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15(10):1119–28.

    Article  PubMed  CAS  Google Scholar 

  27. Hsu JC, Carnac R, Henschel V, et al. Population pharmacokinetics (popPK) and exposure-response (ER) analyses to confirm alectinib 600 mg BID dose selection in a crizotinib-progressed or intolerant population. J Clin Oncol. 2016;34(15 Suppl.):e20598. https://doi.org/10.1200/JCO.2017.35.15_suppl.e20616.

    Article  Google Scholar 

  28. Morcos PN, Dall GC, Parrott NJ, et al. Effect of food and the proton pump inhibitor (PPI) esomeprazole on the pharmacokinetics (PK) of alectinib, a highly selective ALK inhibitor, in healthy subjects [abstract no. PI-120]. Clin Pharmacol Ther. 2016;99(Suppl 1):S62–3.

    Google Scholar 

  29. Nakagawa T, Fowler S, Takanashi K, et al. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiot Fate Foreign Compd Biol Syst. 2018;48(6):546–54.

    Article  CAS  Google Scholar 

  30. Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39.

    Article  PubMed  CAS  Google Scholar 

  31. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377:829–38.

    Article  PubMed  CAS  Google Scholar 

  32. Camidge DR, Peters S, Mok T, et al. Updated efficacy and safety data from the global phase III ALEX study of alectinib (AL) versus crizotinib (CZ) in untreated advanced ALK+ NSCLC. J Clin Oncol. 2018;36(15 Suppl):9043. https://doi.org/10.1200/JCO.2018.36.15_suppl.9043.

    Article  Google Scholar 

  33. European Medicines Agency. Alecensa (alectinib): assessment report. 2017. http://www.ema.europa.eu/ema/. Accessed 2 Mar 2018.

  34. Ou SH, Ahn JS, De Petris L, et al. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol. 2016;34(7):661–8.

    Article  PubMed  CAS  Google Scholar 

  35. Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–42.

    Article  PubMed  CAS  Google Scholar 

  36. Barlesi F, Dingemans AMC, Yang JCH, et al. Updated efficacy and safety from the global phase II NP28673 study of alectinib in patients (pts) with previously treated ALK+ non-small-cell lung cancer (NSCLC) [abstract no. 1263P]. Ann Oncol. 2016;27(Suppl 6):1263P.

    Google Scholar 

  37. Camidge DR, Gadgeel S, Ou S-H, et al. Updated efficacy and safety data from the phase 2 NP28761 study of alectinib in ALK-positive non-small-cell lung cancer [abstract no. MA07.02]. J Thorac Oncol. 2017;12(Suppl 1):S378.

    Article  Google Scholar 

  38. Ou S-HI, Gandhi L, Shaw A, et al. Updated pooled analysis of CNS endpoints in two phase II studies of alectinib in ALK+ NSCLC [abstract no. MA07.01]. J Thorac Oncol. 2017;12(Suppl 1):377.

    Google Scholar 

  39. Novello S, Mazieres J, Oh IJ, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study. Ann Oncol. 2018. https://doi.org/10.1093/annonc/mdy121.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18(6):548–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ou SH. Crizotinib: a novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged non-small cell lung cancer and beyond. Drug Des Dev Ther. 2011;5:471–85.

    Article  CAS  Google Scholar 

  42. Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol. 2016;27(Suppl 3):iii42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song Z, Wang M, Zhang A. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance. Acta Pharm Sin B. 2015;5(1):34–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. National Institute for Health and Care Excellence. Alectinib for untreated ALK-positive advanced non-small-cell lung cancer. 2018. https://www.nice.org.uk/. Accessed 29 Jun 2018.

  45. European Medicines Agency. Zykadia (ceritinib): summary of product characteristics. 2015. http://www.ema.europa.eu/ema/. Accessed 2 Mar 2018.

  46. Novartis. Prescribing information for Zykadia® (ceritinib). 2017. https://www.accessdata.fda.gov/. Accessed 2 Mar 2018.

  47. Sullivan I, Planchard D. ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol. 2016;8(1):32–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Luo P, Fan J, Zou Z. Efficacy of ALK inhibitors in the treatment of ALK-rearranged non-small cell lung cancer and brain metastases: a meta-analysis [abstract no. PUB025]. J Thorac Oncol. 2017;12(Suppl 2):S2373.

    Article  Google Scholar 

  49. Peters GJ, Muller IB, Giovannetti E. Should alectinib or ceritinib be given as first line therapy for ALK positive non-small cell lung cancer patients instead of crizotinib? Transl Cancer Res. 2017;6(Suppl 6):S1010–3.

    Article  Google Scholar 

  50. Gridelli C, Casaluce F, Sgambato A, et al. J-ALEX trial will crown alectinib as the standard choice for anaplastic lymphoma kinase positive untreated non-small cell lung cancer patients? J Thorac Dis. 2018;10(1):106–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Soria JC, Tan DS, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–29.

    Article  PubMed  CAS  Google Scholar 

  52. Shaw AT, Kim TM, Crino L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–86.

    Article  PubMed  CAS  Google Scholar 

  53. Carlson JJ, Canestaro W, Ravelo A, et al. The cost-effectiveness of alectinib in anaplastic lymphoma kinase-positive (ALK+) advanced NSCLC previously treated with crizotinib. J Med Econ. 2017;20(7):671–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

During the peer review process, the manufacturer of alectinib was also offered an opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Paik.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

Julia Paik and Sohita Dhillon are salaried employees of Adis/Springer, are responsible for the article content and declare no relevant conflicts of interest.

Additional information

The manuscript was reviewed by: C. C. Lin, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; A. A. Rossi, Division of Medical Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paik, J., Dhillon, S. Alectinib: A Review in Advanced, ALK-Positive NSCLC. Drugs 78, 1247–1257 (2018). https://doi.org/10.1007/s40265-018-0952-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0952-0

Navigation