Advertisement

Drug Safety

, Volume 42, Issue 2, pp 235–245 | Cite as

Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology

  • Rashmi R. ShahEmail author
Review Article

Abstract

Histone deacetylases (HDACs) are expressed at increased levels in cells of various malignancies, and the use of HDAC inhibitors has improved outcomes in patients with haematological malignancies (T-cell lymphomas and multiple myeloma). However, they are not as effective in solid tumours. Five agents are currently approved under various jurisdictions, namely belinostat, chidamide, panobinostat, romidepsin and vorinostat. These agents are associated with a range of class-related and agent-specific serious and/or severe adverse effects, notably myelosuppression, diarrhoea and various cardiac effects. Among the cardiac effects are ST-T segment abnormalities and QTc interval prolongation of the electrocardiogram, isolated cases of atrial fibrillation and, in rare instances, ventricular tachyarrhythmias. In order to improve the safety profile of this class of drugs as well as their efficacy in indications already approved and to further widen their indications, a large number of newer HDAC inhibitors with varying degrees of HDAC isoform selectivity have been synthesised and are currently under clinical development. Preliminary evidence from early studies suggests that they may be effective in non-haematological cancers as well when used in combination with other therapeutic modalities, but that they too appear to be associated with the above class-related adverse effects. As the database accumulates, the safety, efficacy and risk/benefit of the newer agents and their indications will become clearer.

Notes

Compliance with Ethical Standards

This is a review of the data in the public domain and the author declares compliance with all ethical standards.

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Rashmi Shah has no conflicts of interest that are relevant to the content of this review and has not received any financial support for writing it. He was formerly a Senior Clinical Assessor at the Medicines and Healthcare products Regulatory Agency (MHRA), London, UK, and now provides expert consultancy services to a number of pharmaceutical companies.

References

  1. 1.
    Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017.  https://doi.org/10.3390/ijms18071414.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Mahlknecht U, Hoelzer D. Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med. 2000;6:623–44.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A. Histone acetylation and disease. Cell Mol Life Sci. 2001;58:728–36.CrossRefPubMedGoogle Scholar
  5. 5.
    West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ceccacci E, Minucci S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer. 2016;114:605–11.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci. 2016;107:1543–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Benedetti R, Conte M, Altucci L. Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal. 2015;23:99–126.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lernoux M, Schnekenburger M, Dicato M, Diederich M. Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol Res. 2018;129:337–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010;127:1332–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Krämer OH, Göttlicher M, Heinzel T. Histone deacetylase as a therapeutic target. Trends Endocrinol Metab. 2001;12:294–300.CrossRefPubMedGoogle Scholar
  13. 13.
    De Souza C, Chatterji BP. HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat Anticancer Drug Discov. 2015;10:145–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Goey AK, Sissung TM, Peer CJ, Figg WD. Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics. 2016;17:1807–15.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shi B, Xu W. The development and potential clinical utility of biomarkers for HDAC inhibitors. Drug Discov Ther. 2013;7:129–36.PubMedGoogle Scholar
  16. 16.
    Food and Drug Administration. Drug-specific reviews on Drugs@FDA. Available at: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
  17. 17.
    European Medicines Agency. Drug-specific assessment reports and labels. Available at: https://www.ema.europa.eu/en/medicines/field_ema_web_categories%253Aname_field/Human/ema_group_types/ema_medicine.
  18. 18.
    European Medicines Agency. Vorinostat - withdrawal assessment report (EMEA/CHMP/559066/2008). Available at: https://www.ema.europa.eu/documents/withdrawal-report/withdrawal-assessment-report-vorinostat-msd_en.pdf.
  19. 19.
    European Medicines Agency. Refusal of the marketing authorisation for Istodax (romidepsin) (EMA/475603/2012). Available at: https://www.ema.europa.eu/documents/smop-initial/questions-answers-refusal-marketing-authorisation-istodax-romidepsin_en.pdf.
  20. 20.
    Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics. 2013;7:47–60.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Moskowitz AJ, Horwitz SM. Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma. 2017;58:1306–19.CrossRefPubMedGoogle Scholar
  22. 22.
    Ramalingam SS, Kummar S, Sarantopoulos J, Shibata S, LoRusso P, Yerk M, et al. Phase I study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. J Clin Oncol. 2010;28:4507–12.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sharma S, Witteveen PO, Lolkema MP, Hess D, Gelderblom H, Hussain SA, et al. A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function. Cancer Chemother Pharmacol. 2015;75:87–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Hamberg P, Woo MM, Chen LC, Verweij J, Porro MG, Zhao L, et al. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemother Pharmacol. 2011;68:805–13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yong WP, Ramirez J, Innocenti F, Ratain MJ. Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes. Clin Cancer Res. 2005;11:6699–704.CrossRefPubMedGoogle Scholar
  26. 26.
    Wong NS, Seah EZh, Wang LZ, Yeo WL, Yap HL, Chuah B, et al. Impact of UDP-gluconoryltransferase 2B17 genotype on vorinostat metabolism and clinical outcomes in Asian women with breast cancer. Pharmacogenet Genom. 2011;21:760–8.CrossRefGoogle Scholar
  27. 27.
    Goey AK, Figg WD. UGT genotyping in belinostat dosing. Pharmacol Res. 2016;105:22–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dong D, Zhang T, Lu D, Liu J, Wu B. In vitro characterization of belinostat glucuronidation: demonstration of both UGT1A1 and UGT2B7 as the main contributing isozymes. Xenobiotica. 2017;47:277–83.PubMedGoogle Scholar
  29. 29.
    Food and Drug Administration. Label for FARYDAK (panobinostat) (23 February 2015). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205353s000lbl.pdf.
  30. 30.
    Agarwal N, McPherson JP, Bailey H, Gupta S, Werner TL, Reddy G, et al. A phase I clinical trial of the effect of belinostat on the pharmacokinetics and pharmacodynamics of warfarin. Cancer Chemother Pharmacol. 2016;77:299–308.CrossRefPubMedGoogle Scholar
  31. 31.
    Munster PN, Rubin EH, Van Belle S, Friedman E, Patterson JK, Van Dyck K, et al. A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res. 2009;15:7077–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Lynch DR Jr, Washam JB, Newby LK. QT interval prolongation and torsades de pointes in a patient undergoing treatment with vorinostat: a case report and review of the literature. Cardiol J. 2012;19:434–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12:3997–4003.CrossRefPubMedGoogle Scholar
  34. 34.
    Sager PT, Balser B, Wolfson J, Nichols J, Pilot R, Jones S, et al. Electrocardiographic effects of class 1 selective histone deacetylase inhibitor romidepsin. Cancer Med. 2015;4:1178–85.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fischer T, Patnaik A, Bhalla K, Beck J, Morganroth J, Laird GH, et al. Results of cardiac monitoring during phase I trials of a novel histone deacetylase (HDAC) inhibitor LBH589 in patients with advanced solid tumors and hematologic malignancies. J Clin Oncol. 2005;23(16_suppl):Abstract 3106.Google Scholar
  36. 36.
    Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26:1766–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Schiattarella GG, Sannino A, Toscano E, Cattaneo F, Trimarco B, Esposito G, et al. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: systematic review of 62 studies and new hypotheses for future research. Int J Cardiol. 2016;219:396–403.CrossRefPubMedGoogle Scholar
  38. 38.
    Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med. 2011;17:333–52.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Millard CJ, Watson PJ, Fairall L, Schwabe JWR. Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci. 2017;38:363–77.CrossRefPubMedGoogle Scholar
  40. 40.
    Pang M, Zhuang S. Histone deacetylase: a potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther. 2010;335:266–72.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Milan M, Pace V, Maiullari F, Chirivì M, Baci D, Maiullari S, et al. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis. 2018;9:108.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2012;4:505–24.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20:6969–78.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Blaheta RA, Cinatl J Jr. Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev. 2002;22:492–511.CrossRefPubMedGoogle Scholar
  45. 45.
    Lagace DC, Nachtigal MW. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J Biol Chem. 2004;279:18851–60.CrossRefPubMedGoogle Scholar
  46. 46.
    Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:479364.  https://doi.org/10.1155/2010/479364.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Eikel D, Lampen A, Nau H. Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Chem Res Toxicol. 2006;19:272–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Shah RR, Stonier PD. Repurposing old drugs in oncology: opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther. 2018.  https://doi.org/10.1111/jcpt.12759.CrossRefPubMedGoogle Scholar
  49. 49.
    Evens AM, Balasubramanian S, Vose JM, Harb W, Gordon LI, Langdon R, et al. A phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma. Clin Cancer Res. 2016;22:1059–66.CrossRefPubMedGoogle Scholar
  50. 50.
    Vey N, Prebet T, Thalamas C, Charbonnier A, Rey J, Kloos I, et al. Phase 1 dose-escalation study of oral abexinostat for the treatment of patients with relapsed/refractory higher-risk myelodysplastic syndromes, acute myeloid leukemia, or acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58:1880–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Ribrag V, Kim WS, Bouabdallah R, Lim ST, Coiffier B, Illes A, et al. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study. Haematologica. 2017;102:903–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim KP, Park SJ, Kim JE, Hong YS, Lee JL, Bae KS, et al. First-in-human study of the toxicity, pharmacokinetics, and pharmacodynamics of CG200745, a pan-HDAC inhibitor, in patients with refractory solid malignancies. Invest New Drugs. 2015;33:1048–57.CrossRefPubMedGoogle Scholar
  53. 53.
    Prebet T, Sun Z, Figueroa ME, Ketterling R, Melnick A, Greenberg PL, et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J Clin Oncol. 2014;32:1242–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N, et al. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol. 2010;89:185–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2016;17:622–31.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Boumber Y, Younes A, Garcia-Manero G. Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor. Expert Opin Investig Drugs. 2011;20:823–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Batlevi CL, Crump M, Andreadis C, Rizzieri D, Assouline SE, Fox S, et al. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol. 2017;178:434–41.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Garcia-Manero G, Montalban-Bravo G, Berdeja JG, Abaza Y, Jabbour E, Essell J, et al. Phase 2, randomized, double-blind study of pracinostat in combination with azacitidine in patients with untreated, higher-risk myelodysplastic syndromes. Cancer. 2017;123:994–1002.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Abaza YM, Kadia TM, Jabbour EJ, Konopleva MY, Borthakur G, Ferrajoli A, et al. Phase 1 dose escalation multicenter trial of pracinostat alone and in combination with azacitidine in patients with advanced hematologic malignancies. Cancer. 2017;123:4851–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Venugopal B, Baird R, Kristeleit RS, Plummer R, Cowan R, Stewart A, et al. A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res. 2013;19:4262–72.CrossRefPubMedGoogle Scholar
  61. 61.
    Brunetto AT, Ang JE, Lal R, Olmos D, Molife LR, Kristeleit R, et al. First-in-human, pharmacokinetic and pharmacodynamic phase I study of resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2013;19:5494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kitazono S, Fujiwara Y, Nakamichi S, Mizugaki H, Nokihara H, Yamamoto N, et al. A phase I study of resminostat in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;75:1155–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Vogl DT, Raje N, Jagannath S, Richardson P, Hari P, Orlowski R, et al. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin Cancer Res. 2017;23:3307–15.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shultz MD, Cao X, Chen CH, Cho YS, Davis NR, Eckman J, et al. Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors. J Med Chem. 2011;54:4752–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Spence S, Deurinck M, Ju H, Traebert M, McLean L, Marlowe J, et al. Histone deacetylase inhibitors prolong cardiac repolarization through transcriptional mechanisms. Toxicol Sci. 2016;153:39–54.CrossRefPubMedGoogle Scholar
  66. 66.
    Kopljar I, Gallacher DJ, De Bondt A, Cougnaud L, Vlaminckx E, Van den Wyngaert I, et al. Functional and transcriptional characterization of histone deacetylase inhibitor-mediated cardiac adverse effects in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med. 2016;5:602–12.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Li P, Kurata Y, Endang M, Ninomiya H, Higaki K, Taufiq F, et al. Restoration of mutant hERG stability by inhibition of HDAC6. J Mol Cell Cardiol. 2018;115:158–69.CrossRefPubMedGoogle Scholar
  68. 68.
    Kazim S, Mohindra R, Gosselin S, Larocque A. QTc prolongation and valproate toxicity. Clin Toxicol (Phila). 2013;51:193.CrossRefGoogle Scholar
  69. 69.
    Shadnia S, Amiri H, Hassanian-Moghaddam H, Rezai M, Vasei Z, Ghodrati N, et al. Favorable results after conservative management of 316 valproate intoxicated patients. J Res Med Sci. 2015;20:656–61.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Acciavatti T, Martinotti G, Corbo M, Cinosi E, Lupi M, Ricci F, et al. Psychotropic drugs and ventricular repolarisation: the effects on QT interval, T-peak to T-end interval and QT dispersion. J Psychopharmacol. 2017;31:453–60.CrossRefPubMedGoogle Scholar
  71. 71.
    Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel). 2010;3:2751–67.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gentile S. Risks of neurobehavioral teratogenicity associated with prenatal exposure to valproate monotherapy: a systematic review with regulatory repercussions. CNS Spectr. 2014;19:305–15.CrossRefPubMedGoogle Scholar
  73. 73.
    Tomson T, Marson A, Boon P, Canevini MP, Covanis A, Gaily E, et al. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia. 2015;56:1006–19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gerrards CrossUK

Personalised recommendations