Skip to main content
Log in

The Topographical Relationship between Visual Field Loss and Peripapillary Retinal Nerve Fibre Layer Thinning Arising from Long-Term Exposure to Vigabatrin

  • Original Research Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Background

The antiepileptic drug vigabatrin is associated with characteristic visual field loss (VAVFL) and thinning of the peripapillary retinal nerve fibre layer (PPRNFL); however, the relationship is equivocal.

Objective

The aim of this study was to determine the function–structure relationship associated with long-term exposure to vigabatrin, thereby improving the risk/benefit analysis of the drug.

Methods

A cross-sectional observational design identified 40 adults who had received long-term vigabatrin for refractory seizures, who had no evidence of co-existing retino-geniculo-cortical visual pathway abnormality, and who had undergone a standardized protocol of perimetry and of optical coherence tomography (OCT) of the PPRNFL. Vigabatrin toxicity was defined as the presence of VAVFL. The function–structure relationship for the superior and inferior retinal quadrants was evaluated by two established models applicable to other optic neuropathies.

Results

The function–structure relationship for each model was consistent with an optic neuropathy. PPRNFL thinning, expressed in micrometres, asymptoted at an equivalent visual field loss of worse than approximately − 10.0 dB, thereby preventing assessment of more substantial thinning. Transformation of the outcomes to retinal ganglion cell soma and axon estimates, respectively, resulted in a linear relationship.

Conclusions

Functional and structural abnormality is strongly related in individuals with vigabatrin toxicity and no evidence of visual pathway comorbidity, thereby implicating retinal ganglion cell dysfunction. OCT affords a limited measurement range compared with perimetry: severity cannot be directly assessed when the PPRNFL quadrant thickness is less than approximately 65 µm, depending on the tomographer. This limitation can be overcome by transformation of thickness to remaining axons, an outcome requiring input from perimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mumford JP, Dam M. Meta-analysis of European placebo controlled studies of vigabatrin in drug resistant epilepsy. Br J Clin Pharmacol. 1989;27(Suppl 1):S101–7.

    Article  Google Scholar 

  2. Appleton RE, Peters AC, Mumford JP, Shaw DE. Randomised, placebo controlled study of vigabatrin as first-line treatment of infantile spasms. Epilepsia. 1999;40(11):1627–33.

    Article  CAS  PubMed  Google Scholar 

  3. Krauss G, Faught E, Foroozan R, Pellock JM, Sergott RC, Shields WD, et al. Sabril® registry 5-year results: characteristics of adult patients treated with vigabatrin. Epilepsy Behav. 2016;56(3):15–9.

    Article  PubMed  Google Scholar 

  4. Pellock JM, Faught E, Foroozan R, Sergott RC, Shields WD, Ziemann A, et al. Which children receive vigabatrin? Characteristics of pediatric patients enrolled in the mandatory FDA registry. Epilepsy Behav. 2016;60(7):174–80.

    Article  PubMed  Google Scholar 

  5. Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ. 1997;314(7075):180–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller NR, Johnson MA, Paul SR, Girkin CA, Perry JD, Endres M, et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology. 1999;53(9):2082–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kälviäinen R, Nousiainen I, Mäntyjärvi M, Nikoskelainen E, Partanen J, Partanen K, et al. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field defects. Neurology. 1999;53(5):922–6.

    Article  PubMed  Google Scholar 

  8. Wild JM, Martinez C, Reinshagen G, Harding GF. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia. 1999;40(12):1784–94.

    Article  CAS  PubMed  Google Scholar 

  9. Lawden MC, Eke T, Degg C, Harding GF, Wild JM. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry. 1999;67(6):716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daneshvar H, Racette L, Coupland SG, Kertes PJ, Guberman A, Zackon D. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology. 1999;106(9):1792–8.

    Article  CAS  PubMed  Google Scholar 

  11. European Medicines Agency. Opinion of the Committee for proprietary medicinal products pursuant to Article 12 of Council Directive 75/319/EEC as amended for vigabatrin. Annex 1. Scientific conclusions and grounds for amendment of the summaries of product characteristics presented by the EMEA. London: European Medicines Agency; 1999. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Vigabatrin_31/WC500014088.pdf. Accessed 31 July 2018.

  12. Wild JM, Fone DL, Aljarudi S, Lawthom C, Smith PE, Newcombe RG, et al. Modelling the risk of visual field loss arising from long-term exposure to the antiepileptic drug vigabatrin: a cross-sectional approach. CNS Drugs. 2013;27(10):841–9.

    Article  CAS  PubMed  Google Scholar 

  13. Malmgren K, Ben-Menachem E, Frisén L. Vigabatrin visual toxicity: evolution and dose dependence. Epilepsia. 2001;42(5):609–15.

    Article  CAS  PubMed  Google Scholar 

  14. Wild JM, Chiron C, Ahn H, Baulac M, Bursztyn J, Gandolfo E, et al. Visual field loss in patients with refractory partial epilepsy treated with vigabatrin: final results from an open-label, observational, multicenter study. CNS Drugs. 2009;23(11):965–82.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson MA, Krauss GL, Miller NR, Medura M, Paul SR. Visual function loss from vigabatrin: effect of stopping the drug. Neurology. 2000;55(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  16. Nousiainen I, Mäntyjärvi M, Kälviäinen R. No reversion in vigabatrin-associated visual field defects. Neurology. 2001;57(10):1916–7.

    Article  CAS  PubMed  Google Scholar 

  17. Choi HJ, Kim DM. Visual field constriction associated with vigabatrin: retinal nerve fiber photographic correlation. J Neurol Neurosurg Psychiatry. 2004;75(10):1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE. Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2006;47(3):917–24.

    Article  PubMed  Google Scholar 

  19. Lawthom C, Smith PEM, Wild JM. Nasal retinal nerve fiber layer attenuation: a biomarker for vigabatrin toxicity. Ophthalmology. 2009;116(3):565–71.

    Article  PubMed  Google Scholar 

  20. Clayton LM, Devile M, Punte T, Kallis C, de Haan GJ, Sander JW, et al. Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol. 2011;69(5):845–54.

    Article  CAS  PubMed  Google Scholar 

  21. Clayton LM, Devile M Punte T de Haan GJ, Sander JW, Acheson JF et al. Patterns of peripapillary retinal nerve fiber layer thinning in vigabatrin-exposed individuals. Ophthalmology 2012;119(10):2152–60.

  22. Origlieri C, Geddie B, Karwoski B, Berl MM, Elling N, McClintock W, et al. Optical coherence tomography to monitor vigabatrin toxicity in children. J AAPOS. 2016;20(2):136–40.

    Article  PubMed  Google Scholar 

  23. Frisen L, Malmgren K. Characterization of vigabatrin associated optic atrophy. Acta Ophthalmol Scand. 2003;81(5):466–73.

    Article  PubMed  Google Scholar 

  24. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ. Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology. 2004;111(10):1935–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H. Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry. 2001;70(6):787–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harding GF, Wild JM, Robertson KA, Rietbrock S, Martinez C. Separating the retinal electrophysiologic effects of vigabatrin. Treatment versus field loss. Neurology. 2000;55(3):347–52.

    CAS  PubMed  Google Scholar 

  27. Wright T, Kumarappah A, Stavropoulos A Reginald A, Buncic JR, Westall CA. Vigabatrin toxicity in infants is associated with retinal defect in adolescence. A prospective observational study. Retina 2017;37(5):858–66.

  28. Sergott RC, Johnson CA, Laxer KD, Wechsler RT, Cherny K, Whittle J, et al. Retinal structure and function in vigabatrin-treated adult patients with refractory complex partial seizures. Epilepsia. 2016;57(10):1634–42.

    Article  CAS  PubMed  Google Scholar 

  29. Jindahra P, Petrie A, Plant GT. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain. 2009;132(3):628–34.

    Article  PubMed  Google Scholar 

  30. Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135(2):534–41.

    Article  PubMed  Google Scholar 

  31. Park HY, Park YG, Cho AH, Park CK. Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology. 2013;120(6):1292–9.

    Article  PubMed  Google Scholar 

  32. Mitchell JR, Oliveira C, Tsiouris AJ, Dinkin MJ. Corresponding ganglion cell atrophy in patients with postgeniculate homonymous field loss. J Neuroophthalmol. 2015;35(4):353–9.

    Article  PubMed  Google Scholar 

  33. Balestrini S, Clayton LM, Bartmann AP, Chinthapalli K, Novy J, Coppola A, et al. Retinal nerve fiber layer thinning is associated with drug resistance in epilepsy. J Neurol Neurosurg Psychiatry. 2016;87(4):396–401.

    Article  PubMed  Google Scholar 

  34. Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47(5):2006–10.

    Article  PubMed  Google Scholar 

  35. Mwanza J-C, Budenz DL, Warren JL, Webel AD, Reynolds CE, Barbosa DT, et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol. 2015;99(6):732–7.

    Article  PubMed  Google Scholar 

  36. Mwanza J-C, Kim HY, Budenz DL, Warren JL, Margolis M, Lawrence SD, et al. Residual and dynamic range of retinal nerver fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophtahlmol Vis Sci. 2015;56(11):6344–51.

    Article  Google Scholar 

  37. Price DA, Swanson WH, Horner DG. Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models. Ophthalmic Physiol Opt. 2017;37(4):409–19.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hood DC. Relating nerve fiber layer thickness to behavioural sensitivity in patients with glaucoma. The application of a linear mode. J Opt Soc Am. 2007;24(5):1426–30.

  39. Wheat JL, Rangaswamy NV, Harwerth RS. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma. 2012;21(2):95–101.

    PubMed  PubMed Central  Google Scholar 

  40. Hood DC, Anderson S, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48(9):3662–8.

    Article  PubMed  Google Scholar 

  41. Hood DC, Anderson S, Rouleau J, Wenick AS, Grover LK, Behrens MM, et al. Retinal nerve fiber layer structure versus visual field function in patients with ischemic optic neuropathy. A test of a linear model. Ophthalmology 2008;115(5):904–10.

  42. Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci. 2007;48(12):5798–805.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sakamento M, Mori S, Akashi A, Inoue Y, Kurimoto T, Kanamori A, et al. Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients. Jpn J Ophthalmol. 2018;62(1):31–40.

    Article  CAS  Google Scholar 

  44. Medeiros FA, Lisboa R, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130(9):1107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin CA, Zangwill LM. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120(4):736–44.

    Article  PubMed  Google Scholar 

  46. Zhang C, Tatham AJ, Daga FB, Jammal AA, Medeiros FA. Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1227–34.

    Article  PubMed  Google Scholar 

  47. Vonthein R, Rauscher S, Paetzold J, Nowomiejska K, Krapp E, Hermann A, et al. The normal age-corrected and reaction time-corrected isopter derived by semi-automated kinetic perimetry. Ophthalmology. 2007;114(6):1065–72.

    Article  PubMed  Google Scholar 

  48. Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci. 2000;41(8):2201–4.

    CAS  PubMed  Google Scholar 

  49. Wood JM, Wild JM. Crews SJ. Serial examination of the normal visual field using Octopus automated projection perimetry. Evidence for a learning effect. Acta Ophthalmol (Copenh). 1987;65(3):326–33.

  50. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107(10):1809–15.

    Article  CAS  PubMed  Google Scholar 

  51. Parikh RS, Parikh SR, Sekhar GC, Prabakaran S, Babu JG, Thomas R. Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology. 2007;114(5):921–6.

    Article  PubMed  Google Scholar 

  52. Raza AS, Hood DC. Evaluation of a method for estimating retinal ganglion cell counts using visual fields and optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(9):2254–68.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hood DC, Raza AS, Kay KY, Sandler SF, Xin D, Ritch R. A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT). Opt Express. 2009;17(5):3997–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pierro L, Gagliardi M, Iuliani L, Ambrosi A, Bandello F. Retinal nerve fiber layer thickness reproducibility using seven different OCT combinations. Invest Ophthalmol Vis Sci. 2012;53(9):5912–20.

    Article  PubMed  Google Scholar 

  55. Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116(12):2294–9.

    Article  PubMed  Google Scholar 

  56. Jeoung JW, Park KH. Comparison of the Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in pre-perimetric glaucoma. Invest Ophthalmol Vis Sci. 2010;51(2):938–45.

    Article  PubMed  Google Scholar 

  57. Watson GM, Keltner JL, Chin EK, Harvey D, Nguyen A, Park SS. Comparison of retinal nerve fiber layer and central macular thickness measurements among five different optical coherence tomography instruments in patients with multiple sclerosis and optic neuritis. J Neuroophthalmol. 2011;31(2):110–6.

    Article  PubMed  Google Scholar 

  58. Giambene B, Virgili G, Menchini U. Retinal nerve fiber layer thickness by Stratus and Cirrus OCT in retrobulbar optic neuritis and nonarteritic ischemic optic neuropathy. Eur J Ophthalmol. 2017;27(1):80–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Wild.

Ethics declarations

Funding

SA was supported by an unrestricted grant from the Ministry of Higher Education, Kingdom of Saudi Arabia. The latter had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation of the manuscript.

Conflicts of interest

John M. Wild, Saleh Aljarudi, Philip E.M. Smith and Carlo Knupp declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of the Local Research and Ethics Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study had approval from the Local Research and Ethics Committee. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wild, J.M., Aljarudi, S., Smith, P.E.M. et al. The Topographical Relationship between Visual Field Loss and Peripapillary Retinal Nerve Fibre Layer Thinning Arising from Long-Term Exposure to Vigabatrin. CNS Drugs 33, 161–173 (2019). https://doi.org/10.1007/s40263-018-0583-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0583-8

Navigation