Skip to main content
Log in

From LBR-101 to Fremanezumab for Migraine

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Calcitonin gene-related peptide (CGRP) is a neuropeptide of importance in migraine pathogenesis. Its central role in migraine was proven pharmacologically by the development of CGRP receptor antagonists. Monoclonal antibodies targeting CGRP or its receptor are effective in the preventive treatment of episodic and chronic migraine and are considered potential breakthroughs in their treatment. Fremanezumab (previously known as TEV-48125, LBR-101, or RN-307) is a humanized IgG2a monoclonal antibody that binds to CGRP. The development of this antibody validated the role of CGRP in chronic migraine and the drug has been recently approved in the US by the FDA, while it continues to be reviewed by other regulatory agencies. Herein we provide an in-depth review of its development. We start by summarizing its in vitro and in vivo pharmacology, and the phase I studies. We then review the late-stage clinical development, with a focus on its efficacy, safety, similarities, and uniqueness relative to other CGRP antibodies. We close by discussing lessons learned on the mechanisms of migraine and areas for future development and exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified from [56])

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Terenghi G, Polak JM, Ghatei MA, Mulderry PK, Butler JM, Unger WG, et al. Distribution and origin of calcitonin gene-related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye. J Comp Neurol. 1985;233(4):506–16. https://doi.org/10.1002/cne.902330410.

    Article  CAS  Google Scholar 

  2. Alevizaki M, Shiraishi A, Rassool FV, Ferrier GJ, MacIntyre I, Legon S. The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 1986;206(1):47–52.

    Article  CAS  Google Scholar 

  3. Recober A, Russo AF. Calcitonin gene-related peptide: an update on the biology. Curr Opin Neurol. 2009;22(3):241–6.

    Article  CAS  Google Scholar 

  4. Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36. https://doi.org/10.1017/s1462399411002067.

    Article  Google Scholar 

  5. Hargreaves R. New migraine and pain research. Headache. 2007;47(Suppl 1):S26–43. https://doi.org/10.1111/j.1526-4610.2006.00675.x.

    Article  Google Scholar 

  6. Edvinsson L. The trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache. 2017;57(Suppl 2):47–55. https://doi.org/10.1111/head.13081.

    Article  Google Scholar 

  7. Edvinsson L, Goadsby PJ. Neuropeptides in migraine and cluster headache. Cephalalgia. 1994;14(5):320–7. https://doi.org/10.1046/j.1468-2982.1994.1405320.x.

    Article  CAS  Google Scholar 

  8. Goadsby P. Neuropeptides and migraine—a useful biological marker? Cephalalgia. 1995;15(5):333–4.

    Google Scholar 

  9. Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158(4):543–59. https://doi.org/10.1097/j.pain.0000000000000831.

    Article  CAS  Google Scholar 

  10. Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53(8):1230–44. https://doi.org/10.1111/head.12179.

    Article  Google Scholar 

  11. Kopruszinski CM, Xie JY, Eyde NM, Remeniuk B, Walter S, Stratton J, et al. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents. Cephalalgia. 2017;37(6):560–70. https://doi.org/10.1177/0333102416650702.

    Article  Google Scholar 

  12. Krasenbaum LJ. A review of CGRP and its receptors. Headache. 2017;57(4):670–1. https://doi.org/10.1111/head.13068.

    Article  Google Scholar 

  13. Edvinsson L. The journey to establish CGRP as a migraine target: a retrospective view. Headache. 2015;55(9):1249–55. https://doi.org/10.1111/head.12656.

    Article  Google Scholar 

  14. Hargreaves R, Bigal ME. Calcitonin gene-related peptide modulators—the renaissance of a new migraine drug class Headache Currents. 2018; (in press).

  15. Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies—successful translation from bench to clinic. Nat Rev Neurol. 2018. https://doi.org/10.1038/s41582-018-0003-1.

    Article  Google Scholar 

  16. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10. https://doi.org/10.1056/nejmoa030505.

    Article  CAS  Google Scholar 

  17. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23. https://doi.org/10.1016/s0140-6736(08)61626-8.

    Article  CAS  Google Scholar 

  18. Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22. https://doi.org/10.1177/0333102411398399.

    Article  Google Scholar 

  19. Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2014;34(2):114–25. https://doi.org/10.1177/0333102413500727.

    Article  Google Scholar 

  20. Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98. https://doi.org/10.1177/0333102416653233.

    Article  Google Scholar 

  21. Silberstein SD. Emerging target-based paradigms to prevent and treat migraine. Clin Pharmacol Ther. 2013;93(1):78–85. https://doi.org/10.1038/clpt.2012.198.

    Article  CAS  Google Scholar 

  22. Schuster NM, Rapoport AM. Calcitonin gene-related peptide-targeted therapies for migraine and cluster headache: a review. Clin Neuropharmacol. 2017;40(4):169–74. https://doi.org/10.1097/wnf.0000000000000227.

    Article  CAS  Google Scholar 

  23. Depre M, Macleod C, Palcza J, Behm M, de Lepeleire I, Han T, et al. Lack of hemodynamic interaction between CGRP-receptor antagonist telcagepant (MK-0974) and sumatriptan: results from a randomized study in patients with migraine. Cephalalgia. 2013;33(16):1292–301. https://doi.org/10.1177/0333102413494272.

    Article  CAS  Google Scholar 

  24. Deen M, Correnti E, Kamm K, Kelderman T, Papetti L, Rubio-Beltran E, et al. Blocking CGRP in migraine patients—a review of pros and cons. J Headache Pain. 2017;18(1):96. https://doi.org/10.1186/s10194-017-0807-1.

    Article  CAS  Google Scholar 

  25. Hostetler ED, Joshi AD, Sanabria-Bohorquez S, Fan H, Zeng Z, Purcell M, et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther. 2013;347(2):478–86. https://doi.org/10.1124/jpet.113.206458.

    Article  CAS  Google Scholar 

  26. Walter S, Bigal ME. TEV-48125: a review of a monoclonal CGRP antibody in development for the preventive treatment of migraine. Curr Pain Headache Rep. 2015;19(3):6. https://doi.org/10.1007/s11916-015-0476-1.

    Article  Google Scholar 

  27. Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 2014;13(11):1100–7. https://doi.org/10.1016/s1474-4422(14)70209-1.

    Article  CAS  Google Scholar 

  28. Monteith D, Collins EC, Vandermeulen C, Van Hecken A, Raddad E, Scherer JC, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the CGRP binding monoclonal antibody LY2951742 (Galcanezumab) in healthy volunteers. Front Pharmacol. 2017;8:740. https://doi.org/10.3389/fphar.2017.00740.

    Article  CAS  Google Scholar 

  29. Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34. https://doi.org/10.1016/s1474-4422(17)30083-2.

    Article  CAS  Google Scholar 

  30. Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1081–90. https://doi.org/10.1016/s1474-4422(15)00249-5.

    Article  CAS  Google Scholar 

  31. Bigal ME, Dodick DW, Krymchantowski AV, VanderPluym JH, Tepper SJ, Aycardi E, et al. TEV-48125 for the preventive treatment of chronic migraine: efficacy at early time points. Neurology. 2016;87(1):41–8. https://doi.org/10.1212/wnl.0000000000002801.

    Article  CAS  Google Scholar 

  32. Bigal ME, Walter S. Monoclonal antibodies for migraine: preventing calcitonin gene-related peptide activity. CNS Drugs. 2014;28(5):389–99. https://doi.org/10.1007/s40263-014-0156-4.

    Article  CAS  Google Scholar 

  33. Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor. Br J Clin Pharmacol. 2015;79(6):886–95. https://doi.org/10.1111/bcp.12591.

    Article  CAS  Google Scholar 

  34. Walter S, Alibhoy A, Escandon R, Bigal ME. Evaluation of cardiovascular parameters in cynomolgus monkeys following IV administration of LBR-101, a monoclonal antibody against calcitonin gene-related peptide. MAbs. 2014;6(4):871–8. https://doi.org/10.4161/mabs.29242.

    Article  Google Scholar 

  35. Zeller J, Poulsen KT, Sutton JE, Abdiche YN, Collier S, Chopra R, et al. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. Br J Pharmacol. 2008;155(7):1093–103. https://doi.org/10.1038/bjp.2008.334.

    Article  CAS  Google Scholar 

  36. Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8-37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol. 2007;150(5):633–40. https://doi.org/10.1038/sj.bjp.0707134.

    Article  CAS  Google Scholar 

  37. Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the Phase 1 program. Cephalalgia. 2014;34(7):483–92. https://doi.org/10.1177/0333102413517775.

    Article  Google Scholar 

  38. Bigal ME, Walter S, Bronson M, Alibhoy A, Escandon R. Cardiovascular and hemodynamic parameters in women following prolonged CGRP inhibition using LBR-101, a monoclonal antibody against CGRP. Cephalalgia. 2014;34(12):968–76. https://doi.org/10.1177/0333102414527646.

    Article  Google Scholar 

  39. Melo-Carrillo A, Noseda R, Nir RR, Schain AJ, Stratton J, Strassman AM, et al. Selective inhibition of trigeminovascular neurons by Fremanezumab: a humanized monoclonal anti-CGRP antibody. J Neurosci. 2017;37(30):7149–63. https://doi.org/10.1523/jneurosci.0576-17.2017.

    Article  CAS  Google Scholar 

  40. Allen DM, Chen LE, Seaber AV, Urbaniak JR. Calcitonin gene-related peptide and reperfusion injury. J Orthop Res. 1997;15(2):243–8. https://doi.org/10.1002/jor.1100150213.

    Article  CAS  Google Scholar 

  41. Kallner G, Gonon A, Franco-Cereceda A. Calcitonin gene-related peptide in myocardial ischaemia and reperfusion in the pig. Cardiovasc Res. 1998;38(2):493–9.

    Article  CAS  Google Scholar 

  42. Lynch JJ Jr, Detwiler TJ, Kane SA, Regan CP. Effect of calcitonin gene-related peptide receptor antagonism on the systemic blood pressure responses to mechanistically diverse vasomodulators in conscious rats. J Cardiovasc Pharmacol. 2010;56(5):518–25. https://doi.org/10.1097/fjc.0b013e3181f5d414.

    Article  CAS  Google Scholar 

  43. Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ. Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol. 2005;289(3):H1169–75. https://doi.org/10.1152/ajpheart.00973.2004.

    Article  CAS  Google Scholar 

  44. Lynch JJ Jr, Regan CP, Edvinsson L, Hargreaves RJ, Kane SA. Comparison of the vasoconstrictor effects of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) and zolmitriptan in human isolated coronary arteries. J Cardiovasc Pharmacol. 2010;55(5):518–21. https://doi.org/10.1097/fjc.0b013e3181d7665f.

    Article  CAS  Google Scholar 

  45. Chan KY, Edvinsson L, Eftekhari S, Kimblad PO, Kane SA, Lynch J, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. J Pharmacol Exp Ther. 2010;334(3):746–52. https://doi.org/10.1124/jpet.110.165993.

    Article  CAS  Google Scholar 

  46. Regan CP, Stump GL, Kane SA, Lynch JJ Jr. Calcitonin gene-related peptide receptor antagonism does not affect the severity of myocardial ischemia during atrial pacing in dogs with coronary artery stenosis. J Pharmacol Exp Ther. 2009;328(2):571–8. https://doi.org/10.1124/jpet.108.144220.

    Article  CAS  Google Scholar 

  47. Shen YT, Mallee JJ, Handt LK, Gilberto DB, Lynch JJ Jr, Hargreaves RJ, et al. Effects of inhibition of alpha-CGRP receptors on cardiac and peripheral vascular dynamics in conscious dogs with chronic heart failure. J Cardiovasc Pharmacol. 2003;42(5):656–61.

    Article  CAS  Google Scholar 

  48. Ohlsson L, Kronvall E, Stratton J, Edvinsson L. Fremanezumab blocks CGRP induced dilatation in human cerebral, middle meningeal and abdominal arteries. J Headache Pain. 2018;19(1):66. https://doi.org/10.1186/s10194-018-0905-8.

    Article  CAS  Google Scholar 

  49. Lynch JJ, Shen YT, Pittman TJ, Anderson KD, Koblan KS, Gould RJ, et al. Effects of the prototype serotonin 5-HT(1B/1D) receptor agonist sumatriptan and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37) on myocardial reactive hyperemic response in conscious dogs. Eur J Pharmacol. 2009;623(1–3):96–102. https://doi.org/10.1016/j.ejphar.2009.09.018.

    Article  CAS  Google Scholar 

  50. Behm MO, Blanchard RL, Murphy MG, Palcza JS, Harris DE, Butterfield KL, et al. Effect of telcagepant on spontaneous ischemia in cardiovascular patients in a randomized study. Headache. 2011;51(6):954–60. https://doi.org/10.1111/j.1526-4610.2011.01901.x.

    Article  Google Scholar 

  51. Chaitman BR, Ho AP, Behm MO, Rowe JF, Palcza JS, Laethem T, et al. A randomized, placebo-controlled study of the effects of telcagepant on exercise time in patients with stable angina. Clin Pharmacol Ther. 2012;91(3):459–66. https://doi.org/10.1038/clpt.2011.246.

    Article  CAS  Google Scholar 

  52. Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings EL, Diener HC, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1091–100. https://doi.org/10.1016/s1474-4422(15)00245-8.

    Article  CAS  Google Scholar 

  53. Silberstein SD, Lipton RB, Dodick DW, Freitag FG, Ramadan N, Mathew N, et al. Efficacy and safety of topiramate for the treatment of chronic migraine: a randomized, double-blind, placebo-controlled trial. Headache. 2007;47(2):170–80. https://doi.org/10.1111/j.1526-4610.2006.00684.x.

    Article  Google Scholar 

  54. Dodick DW, Turkel CC, DeGryse RE, Aurora SK, Silberstein SD, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50(6):921–36. https://doi.org/10.1111/j.1526-4610.2010.01678.x.

    Article  Google Scholar 

  55. Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the Preventive Treatment of Chronic Migraine. N Engl J Med. 2017;377(22):2113–22. https://doi.org/10.1056/nejmoa1709038.

    Article  CAS  Google Scholar 

  56. Yeung PP, Aycardi E, Bigal ME, Blankenbiller T, Grozinski-Wolff M, Yang R et al. Early onset of action with fremanezumab versus placebo for the preventive treatment of chronic migraine Y. J Journal of Headache and Pain. 2017;18(1, suppl 1):132.

  57. Dodick DW, Silberstein SD, Bigal ME, Yeung PP, Blankenbiller T, Grozinski-Wolff M, et al. Effect of fremanezumab compared with placebo on prevention of episodic migraine: a randomized clinical trial. JAMA. 2018;319(19):2113–22.

    Article  Google Scholar 

  58. Oakes TMM, Skljarevski V, Zhang Q, Kielbasa W, Hodsdon ME, Detke HC, et al. Safety of galcanezumab in patients with episodic migraine: a randomized placebo-controlled dose-ranging Phase 2b study. Cephalalgia. 2018;38(6):1015–25. https://doi.org/10.1177/0333102417747230.

    Article  Google Scholar 

  59. Skljarevski V, Oakes TM, Zhang Q, Ferguson MB, Martinez J, Camporeale A, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol. 2018;75(2):187–93. https://doi.org/10.1001/jamaneurol.2017.3859.

    Article  Google Scholar 

  60. Dodick DW, Ashina M, Brandes JL, Kudrow D, Lanteri-Minet M, Osipova V, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia. 2018;38(6):1026–37. https://doi.org/10.1177/0333102418759786.

    Article  Google Scholar 

  61. Goadsby PJ, Reuter U, Hallstrom Y, Broessner G, Bonner JH, Zhang F, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32. https://doi.org/10.1056/nejmoa1705848.

    Article  CAS  Google Scholar 

  62. Lipton RB, Brennan A, Palmer S, Hatswell AJ, Porter JK, Sapra S, et al. Estimating the clinical effectiveness and value-based price range of erenumab for the prevention of migraine in patients with prior treatment failures: a US societal perspective. J Med Econ. 2018. https://doi.org/10.1080/13696998.2018.1457533.

    Article  Google Scholar 

  63. Underwood E. A shot at migraine. Science. 2016;351(6269):116–9. https://doi.org/10.1126/science.351.6269.116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E. Bigal.

Ethics declarations

Funding

No funding was provided for writing this manuscript. At the time of writing, former employees of Teva (Bigal and Aycardi) were no longer working with the sponsor.

Conflict of interest

Dr Bigal was a full-time employee of Labrys (Chief Medical Officer) and of Teva (Chief Medical Officer and Chief Scientific Officer) and, as such, received salary and equity from both companies. He was directly involved with the development of fremanezumab at all stages. He is currently at Purdue. Dr Rapoport is a consultant and speaker for Teva Pharmaceuticals and was a consultant to Labrys. He is an author on multiple phase II and phase III publications on the program. Dr Silberstein is a consultant to Teva Pharmaceuticals and was a consultant to Labrys. He is an author on multiple phase II and phase III publications on the program and is the primary investigator on the phase III CM program. Dr Walter was a full-time employee at Labrys (Head of Preclinical Research and Clinical Pharmacology) and supported the transition of the program to Teva. Dr Hargreaves was a consultant to Labrys, was a full-time employee at Merck, and is currently a full-time employee at Celgene. Dr Aycardi was a full-time employee at Teva (Head of Development for Fremanezumab). As such, he received salary and equity compensation from Teva. He is currently at Xenon pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigal, M.E., Rapoport, A.M., Silberstein, S.D. et al. From LBR-101 to Fremanezumab for Migraine. CNS Drugs 32, 1025–1037 (2018). https://doi.org/10.1007/s40263-018-0579-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0579-4

Navigation