CNS Drugs

, Volume 32, Issue 4, pp 305–320 | Cite as

Pharmacogenetics of Opioid Use Disorder Treatment

  • Richard C. Crist
  • Toni-Kim Clarke
  • Wade H. Berrettini
Leading Article


Opioid use disorder (OUD) is a significant health problem in the United States and many other countries. A combination of issues, most notably increased prescription of opioid analgesics, has resulted in climbing rates of opioid abuse and overdose over the last decade. This ongoing epidemic has produced a growing population of patients requiring treatment for OUD. Medications such as methadone and buprenorphine have well documented success rates in treating the disorder compared with placebo. However, significant percentages of the population still fail to maintain abstinence or reduce illicit opioid use while using such medications. Genetic variation may play a role in this variability in outcome through pharmacokinetic or pharmacodynamic effects on OUD medications, or by affecting the rate of negative side effects and adverse events. This review focuses on the existing literature on the pharmacogenetics of OUD treatment, with specific focus on medication metabolism, treatment outcomes, and adverse events.


Compliance with Ethical Standards


Dr Crist was supported by National Institute on Drug Abuse grant K01 DA036751. Dr Clarke is funded by the Wellcome Trust (Wellcome Trust Strategic Award ‘STratifying Resilience and Depression Longitudinally’ [STRADL] Reference 104036/Z/14/Z). Dr Berrettini was supported by National Institute on Drug Abuse grant R01 DA044015. The funding sources had no role in preparation, review, or approval of the manuscript.

Conflicts of interest

Drs Crist, Clarke, and Berrettini declare that they have no conflicts of interest.


  1. 1.
    Brady KT, McCauley JL, Back SE. Prescription opioid misuse, abuse, and treatment in the united states: an update. Am J Psychiatry. 2016;173(1):18–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Han B, et al. Prescription opioid use, misuse, and use disorders in US adults: 2015 National survey on drug use and health. Ann Intern Med. 2017;167(5):293–301.PubMedCrossRefGoogle Scholar
  3. 3.
    Martell BA, et al. Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. Ann Intern Med. 2007;146(2):116–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers—United States, 2002–2004 and 2008–2010. Drug Alcohol Depend. 2013;132(1–2):95–100.PubMedCrossRefGoogle Scholar
  5. 5.
    Birnbaum HG, et al. Societal costs of prescription opioid abuse, dependence, and misuse in the United States. Pain Med. 2011;12(4):657–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Florence CS, et al. The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med Care. 2016;54(10):901–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Jiang R, et al. The societal cost of heroin use disorder in the United States. PLoS One. 2017;12(5):e0177323.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Novak SP, et al. Nonmedical use of prescription drugs in the European Union. BMC Psychiatry. 2016;16:274.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    United Nations Office on Drugs and Crime. World Drug Report 2017, United Nations publication. ISBN: 978-92-1-148291-1Google Scholar
  10. 10.
    Mattick RP, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2014;(2):CD002207.
  11. 11.
    Degenhardt L, et al. The impact of opioid substitution therapy on mortality post-release from prison: retrospective data linkage study. Addiction. 2014;109(8):1306–17.PubMedCrossRefGoogle Scholar
  12. 12.
    Gowing L, et al. Oral substitution treatment of injecting opioid users for prevention of HIV infection. Cochrane Database Syst Rev. 2011;(8):CD004145.
  13. 13.
    Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Soyka M. New developments in the management of opioid dependence: focus on sublingual buprenorphine-naloxone. Subst Abuse Rehabil. 2015;6:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Minozzi S, et al. Oral naltrexone maintenance treatment for opioid dependence. Cochrane Database Syst Rev. 2011;(4):CD001333.
  16. 16.
    Kirchmayer U, et al. A systematic review on the efficacy of naltrexone maintenance treatment in opioid dependence. Addiction. 2002;97(10):1241–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Johansson BA, Berglund M, Lindgren A. Efficacy of maintenance treatment with naltrexone for opioid dependence: a meta-analytical review. Addiction. 2006;101(4):491–503.PubMedCrossRefGoogle Scholar
  18. 18.
    Krupitsky E, et al. Injectable extended-release naltrexone (XR-NTX) for opioid dependence: long-term safety and effectiveness. Addiction. 2013;108(9):1628–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Krupitsky E, et al. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011;377(9776):1506–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Eap CB, Buclin T, Baumann P. Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiang CN, Hawks RL. Pharmacokinetics of the combination tablet of buprenorphine and naloxone. Drug Alcohol Depend. 2003;70(2 Suppl):S39–47.PubMedCrossRefGoogle Scholar
  22. 22.
    McCance-Katz EF, et al. Interaction between buprenorphine and atazanavir or atazanavir/ritonavir. Drug Alcohol Depend. 2007;91(2–3):269–78.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hser YI, et al. Treatment retention among patients randomized to buprenorphine/naloxone compared to methadone in a multi-site trial. Addiction. 2014;109(1):79–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Brewer DD, et al. A meta-analysis of predictors of continued drug use during and after treatment for opiate addiction. Addiction. 1998;93(1):73–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Clark RE, et al. Risk factors for relapse and higher costs among medicaid members with opioid dependence or abuse: opioid agonists, comorbidities, and treatment history. J Subst Abuse Treat. 2015;57:75–80.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yin W, et al. Factors associated with depression and anxiety among patients attending community-based methadone maintenance treatment in China. Addiction. 2015;110(Suppl 1):51–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferri M, et al. Predictive factors for relapse in patients on buprenorphine maintenance. Am J Addict. 2014;23(1):62–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Weinstein ZM, et al. Long-term retention in Office Based Opioid Treatment with buprenorphine. J Subst Abuse Treat. 2017;74:65–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Bouer R, et al. The roles of P-glycoprotein and intracellular metabolism in the intestinal absorption of methadone: in vitro studies using the rat everted intestinal sac. Fundam Clin Pharmacol. 1999;13(4):494–500.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez M, et al. Effect of P-glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J Pharm Pharmacol. 2004;56(3):367–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Coller JK, et al. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006;80(6):682–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Levran O, et al. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17(14):2219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim RB, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70(2):189–99.PubMedCrossRefGoogle Scholar
  34. 34.
    Hung CC, et al. Impact of genetic polymorphisms in ABCB1, CYP2B6, OPRM1, ANKK1 and DRD2 genes on methadone therapy in Han Chinese patients. Pharmacogenomics. 2011;12(11):1525–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Crettol S, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther. 2006;80(6):668–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Csajka C, et al. Population genetic-based pharmacokinetic modeling of methadone and its relationship with the QTc interval in OPIOID-DEPENDENT PATIENTS. Clin Pharmacokinet. 2016;55(12):1521–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Crettol S, et al. No influence of ABCB1 haplotypes on methadone dosage requirement. Clin Pharmacol Ther. 2008;83(5):668–9 (author reply 669–70).PubMedCrossRefGoogle Scholar
  38. 38.
    Fonseca F, et al. Contribution of cytochrome P450 and ABCB1 genetic variability on methadone pharmacokinetics, dose requirements, and response. PLoS One. 2011;6(5):e19527.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mouly S, et al. Methadone dose in heroin-dependent patients: role of clinical factors, comedications, genetic polymorphisms and enzyme activity. Br J Clin Pharmacol. 2015;79(6):967–77.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Buchard A, et al. Postmortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: influence of co-medication and p-glycoprotein genotype. J Forensic Sci. 2010;55(2):457–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee HY, et al. Moving toward personalized medicine in the methadone maintenance treatment program: a pilot study on the evaluation of treatment responses in Taiwan. Biomed Res Int. 2013;2013:741403.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Luo R, et al. Impact of SNP-SNP interaction among ABCB1, ARRB2, DRD1 and OPRD1 on methadone dosage requirement in Han Chinese patients. Pharmacogenomics. 2017;18(18):1659–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Dennis BB, et al. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One. 2014;9(1):e86114.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bart G, et al. Ethnic and genetic factors in methadone pharmacokinetics: a population pharmacokinetic study. Drug Alcohol Depend. 2014;145:185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zahari Z, et al. Relationship between ABCB1 polymorphisms and serum methadone concentration in patients undergoing methadone maintenance therapy (MMT). Am J Drug Alcohol Abuse. 2016;42(5):587–96.PubMedCrossRefGoogle Scholar
  46. 46.
    van der Weide J, Steijns LS. Cytochrome P450 enzyme system: genetic polymorphisms and impact on clinical pharmacology. Ann Clin Biochem. 1999;36(Pt 6):722–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gaedigk A, et al. The pharmacogene variation (pharmvar) consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther. 2017;103(3):399–401.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kharasch ED, Stubbert K. Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol. 2013;53(3):305–13.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kharasch ED, et al. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology. 2015;123(5):1142–53.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Levran O, et al. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol. 2013;18(4):709–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Tsai HJ, et al. Assessment of CYP450 genetic variability effect on methadone dose and tolerance. Pharmacogenomics. 2014;15(7):977–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Crettol S, et al. Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment. Clin Pharmacol Ther. 2005;78(6):593–604.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang SC, et al. CYP2B6 polymorphisms influence the plasma concentration and clearance of the methadone S-enantiomer. J Clin Psychopharmacol. 2011;31(4):463–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Dobrinas M, et al. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study. Pharmacogenet Genomics. 2013;23(2):84–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Bunten H, et al. OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths. Clin Pharmacol Ther. 2010;88(3):383–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Totah RA, et al. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology. 2008;108(3):363–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Gerber JG, Rhodes RJ, Gal J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality. 2004;16(1):36–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Shinderman M, et al. Cytochrome P4503A4 metabolic activity, methadone blood concentrations, and methadone doses. Drug Alcohol Depend. 2003;69(2):205–11.PubMedCrossRefGoogle Scholar
  61. 61.
    Shiran MR, et al. Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol. 2009;67(1):29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shiran MR, et al. Pharmacokinetic-pharmacodynamic modeling of mood and withdrawal symptoms in relation to plasma concentrations of methadone in patients undergoing methadone maintenance treatment. J Clin Psychopharmacol. 2012;32(5):666–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Eap CB, et al. Cytochrome P450 2D6 genotype and methadone steady-state concentrations. J Clin Psychopharmacol. 2001;21(2):229–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Kringen MK, et al. Combined effect of CYP2B6 genotype and other candidate genes on a steady-state serum concentration of methadone in opioid maintenance treatment. Ther Drug Monit. 2017;39(5):550–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Coller JK, et al. Lack of influence of CYP2D6 genotype on the clearance of (R)-, (S)- and racemic-methadone. Int J Clin Pharmacol Ther. 2007;45(7):410–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Lotsch J, et al. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet Genomics. 2010;20(5):291–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Levran O, et al. Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics. 2013;14(7):755–68.PubMedCrossRefGoogle Scholar
  68. 68.
    Barratt DT, et al. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics. Pharmgenomics Pers Med. 2012;5:53–62.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Smith AH, et al. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol Psychiatry. 2017;22(3):346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yang HC, et al. Genome-wide pharmacogenomic study on methadone maintenance treatment identifies SNP rs17180299 and multiple haplotypes on CYP2B6, SPON1, and GSG1L associated with plasma concentrations of methadone R- and S-enantiomers in heroin-dependent patients. PLoS Genet. 2016;12(3):e1005910.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Burstyn-Cohen T, et al. F-Spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron. 1999;23(2):233–46.PubMedCrossRefGoogle Scholar
  72. 72.
    Gu X, et al. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons. Nat Commun. 2016;7:10873.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Iribarne C, et al. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci. 1997;60(22):1953–64.PubMedCrossRefGoogle Scholar
  74. 74.
    Moody DE, et al. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal Biochem. 2002;306(1):31–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Picard N, et al. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Crist RC, et al. An intronic variant in OPRD1 predicts treatment outcome for opioid dependence in African-Americans. Neuropsychopharmacology. 2013;38(10):2003–10.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Crist RC, et al. A polymorphism in the OPRM1 3’-untranslated region is associated with methadone efficacy in treating opioid dependence. Pharmacogenomics J. 2018;18(1):173–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Kuo HW, et al. Pharmacogenomics study on cadherin 2 network with regard to HIV infection and methadone treatment outcome. PLoS One. 2017;12(3):e0174647.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 2008;31(9):487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Nelson EC, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21(5):608–14.PubMedCrossRefGoogle Scholar
  81. 81.
    Fonseca F, et al. Response to methadone maintenance treatment is associated with the MYOCD and GRM6 genes. Mol Diagn Ther. 2010;14(3):171–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Fonseca F, et al. ALDH5A1 variability in opioid dependent patients could influence response to methadone treatment. Eur Neuropsychopharmacol. 2014;24(3):420–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Oneda B, et al. beta-Arrestin2 influences the response to methadone in opioid-dependent patients. Pharmacogenomics J. 2011;11(4):258–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Crettol S, et al. Association of dopamine and opioid receptor genetic polymorphisms with response to methadone maintenance treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1722–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Barratt DT, Coller JK, Somogyi AA. Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(4):323–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Bawor M, et al. Contribution of BDNF and DRD2 genetic polymorphisms to continued opioid use in patients receiving methadone treatment for opioid use disorder: an observational study. Addict Sci Clin Pract. 2015;10:19.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lawford BR, et al. The D(2) dopamine receptor A(1) allele and opioid dependence: association with heroin use and response to methadone treatment. Am J Med Genet. 2000;96(5):592–8.PubMedCrossRefGoogle Scholar
  88. 88.
    de Cid R, et al. BDNF variability in opioid addicts and response to methadone treatment: preliminary findings. Genes Brain Behav. 2008;7(5):515–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang SC, et al. The association of genetic polymorphisms in the kappa-opioid receptor 1 gene with body weight, alcohol use, and withdrawal symptoms in patients with methadone maintenance. J Clin Psychopharmacol. 2014;34(2):205–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Tian JN, et al. UGT2B7 genetic polymorphisms are associated with the withdrawal symptoms in methadone maintenance patients. Pharmacogenomics. 2012;13(8):879–88.PubMedCrossRefGoogle Scholar
  91. 91.
    de los Cobos JP, et al. Association of CYP2D6 ultrarapid metabolizer genotype with deficient patient satisfaction regarding methadone maintenance treatment. Drug Alcohol Depend. 2007;89(2–3):190–4.CrossRefGoogle Scholar
  92. 92.
    de los Cobos JP, et al. Satisfaction With methadone and opioid receptor genes polymorphisms in treatment-refractory heroin-dependent patients. J Clin Psychopharmacol. 2017;37(3):378–80.CrossRefGoogle Scholar
  93. 93.
    Clarke TK, et al. Genetic variation in OPRD1 and the response to treatment for opioid dependence with buprenorphine in European-American females. Pharmacogenomics J. 2014;14(3):303–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhu Y, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron. 1999;24(1):243–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Nelson EC, et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict Biol. 2014;19(1):111–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Gerra G, et al. Association between gene variants and response to buprenorphine maintenance treatment. Psychiatry Res. 2014;215(1):202–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Evans E, et al. Mortality among individuals accessing pharmacological treatment for opioid dependence in California, 2006–10. Addiction. 2015;110(6):996–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Concool B, Smith H, Stimmel B. Mortality rates of persons entering methadone maintenance: a seven-year study. Am J Drug Alcohol Abuse. 1979;6(3):345–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Richards-Waugh LL, et al. Fatal methadone toxicity: potential role of CYP3A4 genetic polymorphism. J Anal Toxicol. 2014;38(8):541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ahmad T, et al. Tell-Tale SNPs: The Role of CYP2B6 in Methadone Fatalities. J Anal Toxicol. 2017;41(4):325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bunten H, et al. CYP2B6 and OPRM1 gene variations predict methadone-related deaths. Addict Biol. 2011;16(1):142–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Anchersen K, et al. Prevalence and clinical relevance of corrected QT interval prolongation during methadone and buprenorphine treatment: a mortality assessment study. Addiction. 2009;104(6):993–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Baker JR, et al. Effect of buprenorphine and antiretroviral agents on the QT interval in opioid-dependent patients. Ann Pharmacother. 2006;40(3):392–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Harris SC, et al. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Krantz MJ. Heterogeneous impact of methadone on the QTc interval: what are the practical implications? J Addict Dis. 2008;27(4):5–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Eap CB, et al. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther. 2007;81(5):719–28.PubMedCrossRefGoogle Scholar
  107. 107.
    Carlquist JF, et al. A Possible Mechanistic Link Between the CYP2C19 Genotype, the Methadone Metabolite Ethylidene-1,5-Dimethyl-3,3-Diphenylpyrrolidene (EDDP), and Methadone-Induced Corrected QT Interval Prolongation in a Pilot Study. Mol Diagn Ther. 2015;19(2):131–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang SC, et al. Functional genetic polymorphisms in CYP2C19 gene in relation to cardiac side effects and treatment dose in a methadone maintenance cohort. OMICS. 2013;17(10):519–26.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Katchman AN, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther. 2002;303(2):688–94.PubMedCrossRefGoogle Scholar
  110. 110.
    Hajj A, et al. KCNH2 polymorphism and methadone dosage interact to enhance QT duration. Drug Alcohol Depend. 2014;141:34–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Marjamaa A, et al. High prevalence of four long QT syndrome founder mutations in the Finnish population. Ann Med. 2009;41(3):234–40.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang SC, et al. Genetic polymorphisms in the opioid receptor mu1 gene are associated with changes in libido and insomnia in methadone maintenance patients. Eur Neuropsychopharmacol. 2012;22(10):695–703.PubMedCrossRefGoogle Scholar
  113. 113.
    Sharafshah A, et al. Association of OPRD1 gene variants with opioid dependence in addicted male individuals undergoing methadone treatment in the North of Iran. J Psychoactive Drugs. 2017;49(3):242–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Albonaim A, et al. Association of OPRK1 gene polymorphisms with opioid dependence in addicted men undergoing methadone treatment in an Iranian population. J Addict Dis. 2017;36(4):227–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Translational Research Laboratories, Department of PsychiatryCenter for Neurobiology and Behavior, University of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Division of Psychiatry, Royal Edinburgh HospitalUniversity of EdinburghEdinburghUK

Personalised recommendations