Skip to main content
Log in

Intra-monocyte Pharmacokinetics of Imiglucerase Supports a Possible Personalized Management of Gaucher Disease Type 1

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objectives

Intravenous imiglucerase enzyme replacement therapy for Gaucher disease type 1 administered every 2 weeks is at variance with the imiglucerase plasma half-life of a few minutes. We hypothesized that studying the pharmacokinetics of imiglucerase in blood Gaucher disease type 1 monocytes would be more relevant for understanding enzyme replacement therapy responses.

Methods

Glucocerebrosidase intra-monocyte activity was studied by flow cytometry. The pharmacokinetics of imiglucerase was analyzed using a population-pharmacokinetic model from a cohort of 31 patients with Gaucher disease type 1 who either started or were receiving long-term treatment with imiglucerase.

Results

A pharmacokinetic analysis of imiglucerase showed a two-compartment model with a high peak followed by a two-phase exponential decay (fast phase half-life: 0.36 days; slow phase half-life: 9.7 days) leading to a median 1.4-fold increase in glucocerebrosidase intra-monocyte activity from the pre-treatment activity (p = 0.04). In patients receiving long-term treatment, for whom the imiglucerase dose per infusion was chosen on the basis of disease aggressiveness/response, imiglucerase clearance correlated with the administered dose. However, the residual glucocerebrosidase intra-monocyte activity value was dose independent, suggesting that the maintenance of imiglucerase residual activity is patient specific. Endogenous pre-treatment glucocerebrosidase intra-monocyte activity was the most informative single parameter for distinguishing patients without (n = 10) and with a clinical indication (n = 17) for starting enzyme replacement therapy (area under the receiver operating characteristic curve: 0.912; 95% confidence interval 0.8–1; p < 0.001), as confirmed also by a factorial analysis of mixed data.

Conclusion

This study provides novel pharmacokinetic data that support current imiglucerase administration regimens and suggests the existence of a glucocerebrosidase activity threshold related to Gaucher disease type 1 aggressiveness. These findings can potentially improve Gaucher disease type 1 management algorithms and clinical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet. 2008;372:1263–71.

    Article  PubMed  CAS  Google Scholar 

  2. Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, et al. Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324:1464–70.

    Article  PubMed  CAS  Google Scholar 

  3. Weinreb NJ, Charrow J, Andersson HC, Kaplan P, Kolodny EH, Mistry P, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med. 2002;113:112–9.

    Article  PubMed  CAS  Google Scholar 

  4. Zimran A, Altarescu G, Philips M, Attias D, Jmoudiak M, Deeb M, et al. Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood. 2010;115:4651–6.

    Article  PubMed  CAS  Google Scholar 

  5. Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, et al. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology. 2010;20:24–32.

    Article  PubMed  CAS  Google Scholar 

  6. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007;5:579–90.

    Article  PubMed  CAS  Google Scholar 

  7. Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, et al. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood. 2011;118:5767–73.

    Article  PubMed  CAS  Google Scholar 

  8. Figueroa ML, Rosenbloom BE, Kay AC, Garver P, Thurston DW, Koziol JA, et al. A less costly regimen of alglucerase to treat Gaucher’s disease. N Engl J Med. 1992;327:1632–6.

    Article  PubMed  CAS  Google Scholar 

  9. Weinreb NJ, Goldblatt J, Villalobos J, Charrow J, Cole JA, Kerstenetzky M, et al. Long-term clinical outcomes in type 1 Gaucher disease following 10 years of imiglucerase treatment. J Inherit Metab Dis. 2013;36:543–53.

    Article  PubMed  CAS  Google Scholar 

  10. Murray GJ, Oliver KL, Jin FS, Brady RO. Studies on the turnover of exogenous mannose-terminal glucocerebrosidase in rat liver lysosomes. J Cell Biochem. 1995;57:208–17.

    Article  PubMed  CAS  Google Scholar 

  11. Xu YH, Ponce E, Sun Y, Leonova T, Bove K, Witte D, et al. Turnover and distribution of intravenously administered mannose-terminated human acid beta-glucosidase in murine and human tissues. Pediatr Res. 1996;39:313–22.

    Article  PubMed  CAS  Google Scholar 

  12. Bijsterbosch MK, Donker W, van de Bilt H, van Weely S, van Berkel TJ, Aerts JM. Quantitative analysis of the targeting of mannose-terminal glucocerebrosidase: predominant uptake by liver endothelial cells. Eur J Biochem. 1996;237:344–9.

    Article  PubMed  CAS  Google Scholar 

  13. Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher’s disease. Lancet. 1996;348:1555–9.

    Article  PubMed  CAS  Google Scholar 

  14. Weinreb NJ, Aggio MC, Andersson HC, Andria G, Charrow J, Clarke JTR, et al. Gaucher disease type 1: revised recommendations on evaluations and monitoring for adult patients. Semin Hematol. 2004;41:15–22.

    Article  PubMed  Google Scholar 

  15. Zimran A. How I treat Gaucher disease. Blood. 2011;118:1463–71.

    Article  PubMed  CAS  Google Scholar 

  16. Sims KB, Pastores GM, Weinreb NJ, Barranger J, Rosenbloom BE, Packman S, et al. Improvement of bone disease by imiglucerase (Cerezyme) therapy in patients with skeletal manifestations of type 1 Gaucher disease: results of a 48-month longitudinal cohort study. Clin Genet. 2008;73:430–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, Berger MG, et al. The French Gaucher’s disease registry: clinical characteristics, complications and treatment of 562 patients. Orphanet J Rare Dis. 2012;7:77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hollak CEM, de Fost M, van Dussen L, Vom Dahl S, Aerts JMFG. Enzyme therapy for the treatment of type 1 Gaucher disease: clinical outcomes and dose-response relationships. Expert Opin Pharmacother. 2009;10:2641–52.

    Article  PubMed  CAS  Google Scholar 

  19. Grabowski GA, Kacena K, Cole JA, Hollak CEM, Zhang L, Yee J, et al. Dose-response relationships for enzyme replacement therapy with imiglucerase/alglucerase in patients with Gaucher disease type 1. Genet Med. 2009;11:92–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goldblatt J, Fletcher JM, McGill J, Szer J, Wilson M. Enzyme replacement therapy “drug holiday”: results from an unexpected shortage of an orphan drug supply in Australia. Blood Cells Mol Dis. 2011;46:107–10.

    Article  PubMed  Google Scholar 

  21. Giraldo P, Irún P, Alfonso P, Dalmau J, Fernández-Galán MA, Figueredo A, et al. Evaluation of Spanish Gaucher disease patients after a 6-month imiglucerase shortage. Blood Cells Mol Dis. 2011;46:115–8.

    Article  PubMed  Google Scholar 

  22. Deroma L, Sechi A, Dardis A, Macor D, Liva G, Ciana G, et al. Did the temporary shortage in supply of imiglucerase have clinical consequences? Retrospective observational study on 34 italian Gaucher type I patients. JIMD Rep. 2013;7:117–22.

    Article  PubMed  Google Scholar 

  23. Stirnemann J, Rose C, Serratrice C, Dalbies F, Lidove O, Masseau A, et al. Impact of imiglucerase supply constraint on the therapeutic management and course of disease in French patients with Gaucher disease type 1. Orphanet J Rare Dis. 2015;10:62.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hollak CEM, vom Dahl S, Aerts JMFG, Belmatoug N, Bembi B, Cohen Y, et al. Force majeure: therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease. Blood Cells Mol Dis. 2010;44:41–7.

    Article  PubMed  CAS  Google Scholar 

  25. Berger J, Lecourt S, Vanneaux V, Rapatel C, Boisgard S, Caillaud C, et al. Glucocerebrosidase deficiency dramatically impairs human bone marrow haematopoiesis in an in vitro model of Gaucher disease. Br J Haematol. 2010;150:93–101.

    PubMed  CAS  Google Scholar 

  26. Berger J, Stirnemann J, Bourgne C, Pereira B, Pigeon P, Heraoui D, et al. The uptake of recombinant glucocerebrosidases by blood monocytes from type 1 Gaucher disease patients is variable. Br J Haematol. 2012;157:274–7.

    Article  PubMed  CAS  Google Scholar 

  27. Peters SP, Coyle P, Glew RH. Differentiation of beta-glucocerebrosidase from beta-glucosidase in human tissues using sodium taurocholate. Arch Biochem Biophys. 1976;175:569–82.

    Article  PubMed  CAS  Google Scholar 

  28. Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity: a novel hallmark of Gaucher disease. J Clin Investig. 1994;93:1288–92.

    Article  PubMed  CAS  Google Scholar 

  29. Pettazzoni M, Froissart R, Pagan C, Vanier MT, Ruet S, Latour P, et al. LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: a novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease. PLoS One. 2017;12:e0181700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Weinreb NJ, Cappellini MD, Cox TM, Giannini EH, Grabowski GA, Hwu W-L, et al. A validated disease severity scoring system for adults with type 1 Gaucher disease. Genet Med. 2010;12:44–51.

    Article  PubMed  Google Scholar 

  31. Pagès J. Multiple factor analysis by example using R: Chapman and Hall/CRC, The R Series; 2014

  32. Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.

    Article  CAS  Google Scholar 

  33. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–40.

    Article  PubMed  Google Scholar 

  34. Tekoah Y, Tzaban S, Kizhner T, Hainrichson M, Gantman A, Golembo M, et al. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep. 2013;33(5):e00071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Xu Y-H, Sun Y, Barnes S, Grabowski GA. Comparative therapeutic effects of velaglucerase alfa and imiglucerase in a Gaucher disease mouse model. PLoS One. 2010;5:e10750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Murray GJ, Jin FS. Immunoelectron microscopic localization of mannose-terminal glucocerebrosidase in lysosomes of rat liver Kupffer cells. J Histochem Cytochem. 1995;43:149–58.

    Article  PubMed  CAS  Google Scholar 

  37. Kallemeijn WW, Scheij S, Hoogendoorn S, Witte MD, Herrera Moro Chao D, van Roomen CPAA, et al. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes. PLoS One. 2017;12:e0170268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gras-Colomer E, Martínez-Gómez MA, Moya-Gil A, Fernandez-Zarzoso M, Merino-Sanjuan M, Climente-Martí M. Cellular uptake of glucocerebrosidase in Gaucher patients receiving enzyme replacement treatment. Clin Pharmacokinet. 2016;55:1103–13.

    Article  PubMed  CAS  Google Scholar 

  39. Beutler E, Kuhl W, Matsumoto F, Pangalis G. Acid hydrolases in leukocytes and platelets of normal subjects and in patients with Gaucher’s and Fabry’s disease. J Exp Med. 1976;143:975–80.

    Article  PubMed  CAS  Google Scholar 

  40. Lorincz M, Herzenberg LA, Diwu Z, Barranger JA, Kerr WG. Detection and isolation of gene-corrected cells in Gaucher disease via a fluorescence-activated cell sorter assay for lysosomal glucocerebrosidase activity. Blood. 1997;89:3412–20.

    PubMed  CAS  Google Scholar 

  41. Brady RO, Pentchev PG, Gal AE, Hibbert SR, Dekaban AS. Replacement therapy for inherited enzyme deficiency: use of purified glucocerebrosidase in Gaucher’s disease. N Engl J Med. 1974;291:989–93.

    Article  PubMed  CAS  Google Scholar 

  42. Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, et al. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology. 2007;17:467–78.

    Article  PubMed  CAS  Google Scholar 

  43. Sato Y, Beutler E. Binding, internalization, and degradation of mannose-terminated glucocerebrosidase by macrophages. J Clin Investig. 1993;91:1909–17.

    Article  PubMed  CAS  Google Scholar 

  44. Varol C, Yona S, Jung S. Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol. 2009;87:30–8.

    Article  PubMed  CAS  Google Scholar 

  45. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214:1913–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mucci JM, Cuello MF, Kisinovsky I, Larroude M, Delpino MV, Rozenfeld PA. Proinflammatory and proosteoclastogenic potential of peripheral blood mononuclear cells from Gaucher patients: Implication for bone pathology. Blood Cells Mol Dis. 2015;55:134–43.

    Article  PubMed  CAS  Google Scholar 

  47. Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC, et al. Osteopontin: a potential biomarker of Gaucher disease. Ann Hematol. 2015;94:1119–25.

    Article  PubMed  CAS  Google Scholar 

  48. Burdo TH, Wood MR, Fox HS. Osteopontin prevents monocyte recirculation and apoptosis. J Leukoc Biol. 2007;81:1504–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Murugesan V, Chuang W-L, Liu J, Lischuk A, Kacena K, Lin H, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol. 2016;91:1082–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ida H, Rennert OM, Ito T, Maekawa K, Eto Y. Type 1 Gaucher disease: phenotypic expression and natural history in Japanese patients. Blood Cells Mol Dis. 1998;24:73–81.

    Article  PubMed  CAS  Google Scholar 

  51. Maaswinkel-Mooij P, Hollak C, van Eysden-Plaisier M, Prins M, Aerts H, Pöll R. The natural course of Gaucher disease in The Netherlands: implications for monitoring of disease manifestations. J Inherit Metab Dis. 2000;23:77–82.

    Article  PubMed  CAS  Google Scholar 

  52. Piran S, Roberts A, Patterson MA, Amato D. The clinical course of untreated Gaucher disease in 22 patients over 10 years: hematological and skeletal manifestations. Blood Cells Mol Dis. 2009;43:289–93.

    Article  PubMed  Google Scholar 

  53. Balwani M, Fuerstman L, Kornreich R, Edelmann L, Desnick RJ. Type 1 Gaucher disease: significant disease manifestations in “asymptomatic” homozygotes. Arch Intern Med. 2010;170:1463–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dominique Chadeyron supported by EA 7453 CHELTER, Université Clermont Auvergne, for secretarial assistance, Pascale Pigeon, Charlène Fernandez, Marine Mérat, Amélie Buffet, Caroline Jamot, and Nathalie Chaudagne, (Clermont-Ferrand University Hospital) for technical assistance; Baptiste Verdier, Sandrine Saugues, and Fanny Soulé, staff of the Centre de Ressources Biologiques Auvergne (CHU Estaing, Clermont-Fd) for the cryopreservation of human samples. Marc G. Berger and Juliette Berger would like to express on behalf of the authors their gratitude to the patients, nurses, and local biologists who participated in the successful completion of this study. We also thank Dr. Bruno Padrazzi and Rachel Sembeil who facilitated the initial exchanges between the collaborating teams of this study.

Author information

Authors and Affiliations

Authors

Contributions

JB organized logistical support for sending samples, performed the experiments, and analyzed some data with MGB MV, TTN, and FM carried out the population-pharmacokinetic modeling and participated in the statistical analysis. BP contributed to the statistical analysis. RF, CC, and MP performed the genotype and biomarker assays. CB assisted with the flow cytometry experiments and CCL18 assays. NB, FD, AM, CR, CS, YMP, IB, FB, JS, and MGB recruited patients. MB and AB assisted in collecting related clinical and biological data. MV, FM, BP, and MGB designed the figures and wrote the paper. MGB and FM designed the research project, supervised the study, analyzed data, and revised the paper.

Corresponding author

Correspondence to Marc G. Berger.

Ethics declarations

Funding

This study was supported by grants from Genzyme SA then Sanofi-Genzyme (Grant no. GZ-2010-10458) and from Vaincre les Maladies Lysosomales (patient association, Paris, France) (Grant no. VML S9MBerger) and research funding from CHU de Clermont-Ferrand as the promotor establishment, Marc G. Berger being an investigator coordinator (Grant no. PHRC2010-AOI MBerger).

Conflict of interest

Nadia Belmatoug, Christian Rose, Marc G. Berger, and Christine Serratrice received honoraria from Sanofi-Genzyme and Shire Corporation for travel and speaking or expert missions; Yves-Marie Pers and Jérôme Stirnemann received travel fees from Sanofi-Genzyme. Nadia Belmatoug, Christian Rose, and Marc G. Berger are scientific leaders of research projects receiving research grants from Sanofi-Genzyme and Shire Corporation. Christian Rose is a scientific leader of a research project receiving research grants from Sanofi-Genzyme. Nadia Belmatoug, Christine Serratrice, Fabrice Camou, and Marc G. Berger are members of the scientific board organized by Sanofi-Genzyme, Shire; Juliette Berger, Marie Vigan, Bruno Pereira, Thu Thuy Nguyen, Roseline Froissart, Florence Dalbiès, Agathe Masseau, Yves-Marie Pers, Ivan Bertchansky, Monia Bengherbia, Céline Bourgne, Catherine Caillaud, Magali Pettazzoni, Amina Berrahal, and France Mentré have no conflicts of interest directly relevant to the contents of this article.

Additional information

Juliette Berger, Roseline Froissart, Nadia Belmatoug, Florence Dalbiès, Agathe Masseau, Christian Rose, Christine Serratrice, Fabrice Camou, Monia Bengherbia, Catherine Caillaud, Jérôme Stirnemann, Marc G. Berger: Member of the French group of Gaucher disease experts, CETG (Comité d’Evaluation du Traitement de la maladie de Gaucher).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, J., Vigan, M., Pereira, B. et al. Intra-monocyte Pharmacokinetics of Imiglucerase Supports a Possible Personalized Management of Gaucher Disease Type 1. Clin Pharmacokinet 58, 469–482 (2019). https://doi.org/10.1007/s40262-018-0708-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0708-8

Navigation