Skip to main content
Log in

Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Inflammatory Bowel Disease

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

According to recent clinical consensus, pharmacotherapy of inflammatory bowel disease (IBD) is, or should be, personalized medicine. IBD treatment is complex, with highly different treatment classes and relatively few data on treatment strategy. Although thorough evidence-based international IBD guidelines currently exist, appropriate drug and dose choice remains challenging as many disease (disease type, location of disease, disease activity and course, extraintestinal manifestations, complications) and patient characteristics [(pharmaco-)genetic predisposition, response to previous medications, side-effect profile, necessary onset of response, convenience, concurrent therapy, adherence to (maintenance) therapy] are involved. Detailed pharmacological knowledge of the IBD drug arsenal is essential for choosing the right drug, in the right dose, in the right administration form, at the right time, for each individual patient. In this in-depth review, clinical pharmacodynamic and pharmacokinetic considerations are provided for tailoring treatment with the most common IBD drugs. Development (with consequent prospective validation) of easy-to-use treatment algorithms based on these considerations and new pharmacological data may facilitate optimal and effective IBD treatment, preferably corroborated by effectiveness and safety registries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kalla R, Ventham NT, Satsangi J, et al. Crohn’s disease. BMJ. 2014;349:g6670.

    Article  PubMed  CAS  Google Scholar 

  2. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–605.

    Article  PubMed  Google Scholar 

  3. Ordas I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012;380(9853):1606–19.

    Article  PubMed  Google Scholar 

  4. Gomollon F, Dignass A, Annese V, et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J Crohns Colitis. 2017;11(1):3–25.

    Article  PubMed  Google Scholar 

  5. Dignass A, Lindsay JO, Sturm A, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohns Colitis. 2012;6(10):991–1030.

    Article  PubMed  Google Scholar 

  6. Baert F, Caprilli R, Angelucci E. Medical therapy for Crohn’s disease: top-down or step-up? Dig Dis. 2007;25(3):260–6.

    Article  PubMed  Google Scholar 

  7. Present DH. How to do without steroids in inflammatory bowel disease. Inflamm Bowel Dis. 2000;6(1):48–57 (discussion 58.).

    Article  PubMed  CAS  Google Scholar 

  8. Peyrin-Biroulet L, Lemann M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33(8):870–9.

    Article  PubMed  CAS  Google Scholar 

  9. Turner D, Walsh CM, Steinhart AH, et al. Response to corticosteroids in severe ulcerative colitis: a systematic review of the literature and a meta-regression. Clin Gastroenterol Hepatol. 2007;5(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  10. Quetglas EG, Armuzzi A, Wigge S, et al. Review article: The pharmacokinetics and pharmacodynamics of drugs used in inflammatory bowel disease treatment. Eur J Clin Pharmacol. 2015;71(7):773–99.

    Article  PubMed  CAS  Google Scholar 

  11. Ardizzone S, Maconi G, Russo A, et al. Randomised controlled trial of azathioprine and 5-aminosalicylic acid for treatment of steroid dependent ulcerative colitis. Gut. 2006;55(1):47–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rang HP, Dale MM, Ritter JM. Pharmacology. 3rd ed. Edinburgh: Churchill Livingstone; 1996.

    Google Scholar 

  13. Thiesen A, Thomson AB. Review article: older systemic and newer topical glucocorticosteroids and the gastrointestinal tract. Aliment Pharmacol Ther. 1996;10(4):487–96.

    Article  PubMed  CAS  Google Scholar 

  14. Neal MJ. Medical Pharmacology at a Glance. 3rd ed. Oxford: Blackwell Science Ltd; 1997.

    Google Scholar 

  15. Schwab M, Klotz U. Pharmacokinetic considerations in the treatment of inflammatory bowel disease. Clin Pharmacokinet. 2001;40(10):723–51.

    Article  PubMed  CAS  Google Scholar 

  16. Hanauer SB. Advantages in IBD: Current Developments in the Treatment of Inflammatory Bowel Diseases. Gastroenterol Hepatol (N Y). 2010;6(5):309–16.

    Google Scholar 

  17. Furst DE, Saag KG. Glucocorticoid withdrawal. 2017. https://www.uptodate.com/contents/glucocorticoid-withdrawal#H16. Accessed Feb 2017.

  18. van Bodegraven AA, van Everdingen JJ, Dijkstra G, et al. Guideline ‘Diagnosis and treatment of inflammatory bowel disease in adults. I. Diagnosis and treatment. Ned Tijdschr Geneeskd. 2010;154:A1899.

    PubMed  Google Scholar 

  19. Frey BM, Frey FJ. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19(2):126–46.

    Article  PubMed  CAS  Google Scholar 

  20. Tanner A, Bochner F, Caffin J, et al. Dose-dependent prednisolone kinetics. Clin Pharmacol Ther. 1979;25(5 Pt 1):571–8.

    Article  PubMed  CAS  Google Scholar 

  21. Bergrem H, Grottum P, Rugstad HE. Pharmacokinetics and protein binding of prednisolone after oral and intravenous administration. Eur J Clin Pharmacol. 1983;24(3):415–9.

    Article  PubMed  CAS  Google Scholar 

  22. Rose JQ, Yurchak AM, Jusko WJ. Dose dependent pharmacokinetics of prednisone and prednisolone in man. J Pharmacokinet Biopharm. 1981;9(4):389–417.

    Article  PubMed  CAS  Google Scholar 

  23. Wald JA, Law RM, Ludwig EA, et al. Evaluation of dose-related pharmacokinetics and pharmacodynamics of prednisolone in man. J Pharmacokinet Biopharm. 1992;20(6):567–89.

    Article  PubMed  CAS  Google Scholar 

  24. Pickup ME. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1979;4(2):111–28.

    Article  PubMed  CAS  Google Scholar 

  25. Davis M, Williams R, Chakraborty J, et al. Prednisone or prednisolone for the treatment of chronic active hepatitis? A comparison of plasma availability. Br J Clin Pharmacol. 1978;5(6):501–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Olivesi A. Modified elimination of prednisolone in epileptic patients on carbamazepine monotherapy, and in women using low-dose oral contraceptives. Biomed Pharmacother. 1986;40(8):301–8.

    PubMed  CAS  Google Scholar 

  27. Bartoszek M, Brenner AM, Szefler SJ. Prednisolone and methylprednisolone kinetics in children receiving anticonvulsant therapy. Clin Pharmacol Ther. 1987;42(4):424–32.

    Article  PubMed  CAS  Google Scholar 

  28. Legler UF. Impairment of prednisolone disposition in patients with Graves’ disease taking methimazole. J Clin Endocrinol Metab. 1988;66(1):221–3.

    Article  PubMed  CAS  Google Scholar 

  29. Legler UF. Enhanced prednisolone elimination: a possible cause for failure of glucocorticoid therapy in Graves’ ophthalmopathy. Horm Metab Res. 1987;19(4):168–70.

    Article  PubMed  CAS  Google Scholar 

  30. Meffin PJ, Wing LM, Sallustio BC, et al. Alterations in prednisolone disposition as a result of oral contraceptive use and dose. Br J Clin Pharmacol. 1984;17(6):655–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Legler UF, Benet LZ. Marked alterations in dose-dependent prednisolone kinetics in women taking oral contraceptives. Clin Pharmacol Ther. 1986;39(4):425–9.

    Article  PubMed  CAS  Google Scholar 

  32. Derendorf H, Mollmann H, Rohdewald P, et al. Kinetics of methylprednisolone and its hemisuccinate ester. Clin Pharmacol Ther. 1985;37(5):502–7.

    Article  PubMed  CAS  Google Scholar 

  33. Mollmann H, Rohdewald P, Barth J, et al. Comparative pharmacokinetics of methylprednisolone phosphate and hemisuccinate in high doses. Pharm Res. 1988;5(8):509–13.

    Article  PubMed  CAS  Google Scholar 

  34. Mollmann H, Rohdewald P, Barth J, et al. Pharmacokinetics and dose linearity testing of methylprednisolone phosphate. Biopharm Drug Dispos. 1989;10(5):453–64.

    Article  PubMed  CAS  Google Scholar 

  35. Al-Habet SM, Rogers HJ. Methylprednisolone pharmacokinetics after intravenous and oral administration. Br J Clin Pharmacol. 1989;27(3):285–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ludwig EA, Kong AN, Camara DS, et al. Pharmacokinetics of methylprednisolone hemisuccinate and methylprednisolone in chronic liver disease. J Clin Pharmacol. 1993;33(9):805–10.

    Article  PubMed  CAS  Google Scholar 

  37. Fost DA, Leung DY, Martin RJ, et al. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol. 1999;103(6):1031–5.

    Article  PubMed  CAS  Google Scholar 

  38. Glynn AM, Slaughter RL, Brass C, et al. Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion. Clin Pharmacol Ther. 1986;39(6):654–9.

    Article  PubMed  CAS  Google Scholar 

  39. Varis T, Kaukonen KM, Kivisto KT, et al. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole. Clin Pharmacol Ther. 1998;64(4):363–8.

    Article  PubMed  CAS  Google Scholar 

  40. Varis T, Kivisto KT, Neuvonen PJ. Grapefruit juice can increase the plasma concentrations of oral methylprednisolone. Eur J Clin Pharmacol. 2000;56(6–7):489–93.

    Article  PubMed  CAS  Google Scholar 

  41. Varis T, Kivisto KT, Neuvonen PJ. The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone. Eur J Clin Pharmacol. 2000;56(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  42. Kandrotas RJ, Slaughter RL, Brass C, et al. Ketoconazole effects on methylprednisolone disposition and their joint suppression of endogenous cortisol. Clin Pharmacol Ther. 1987;42(4):465–70.

    Article  PubMed  CAS  Google Scholar 

  43. Slayter KL, Ludwig EA, Lew KH, et al. Oral contraceptive effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1996;59(3):312–21.

    Article  PubMed  CAS  Google Scholar 

  44. Toothaker RD, Welling PG. Effect of dose size on the pharmacokinetics of intravenous hydrocortisone during endogenous hydrocortisone suppression. J Pharmacokinet Biopharm. 1982;10(2):147–56.

    Article  PubMed  CAS  Google Scholar 

  45. Hamedani R, Feldman RD, Feagan BG. Review article: Drug development in inflammatory bowel disease: budesonide – a model of targeted therapy. Aliment Pharmacol Ther. 1997;11(Suppl 3):98–107 (discussion 107–8).

    PubMed  CAS  Google Scholar 

  46. Hoy SM. Budesonide MMX((R)): a review of its use in patients with mild to moderate ulcerative colitis. Drugs. 2015;75(8):879–86.

    Article  PubMed  CAS  Google Scholar 

  47. Ryrfeldt A, Edsbacker S, Pauwels R. Kinetics of the epimeric glucocorticoid budesonide. Clin Pharmacol Ther. 1984;35(4):525–30.

    Article  PubMed  CAS  Google Scholar 

  48. Spencer CM, McTavish D. Budesonide. A review of its pharmacological properties and therapeutic efficacy in inflammatory bowel disease. Drugs. 1995;50(5):854–72.

    Article  PubMed  CAS  Google Scholar 

  49. D’Haens G. Systematic review: second-generation vs. conventional corticosteroids for induction of remission in ulcerative colitis. Aliment Pharmacol Ther. 2016;44(10):1018–29.

    Article  PubMed  CAS  Google Scholar 

  50. Edsbacker S, Andersson T. Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn’s disease. Clin Pharmacokinet. 2004;43(12):803–21.

    Article  PubMed  Google Scholar 

  51. Seidegard J. Reduction of the inhibitory effect of ketoconazole on budesonide pharmacokinetics by separation of their time of administration. Clin Pharmacol Ther. 2000;68(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  52. Gross V, Bar-Meir S, Lavy A, et al. Budesonide foam versus budesonide enema in active ulcerative proctitis and proctosigmoiditis. Aliment Pharmacol Ther. 2006;23(2):303–12.

    Article  PubMed  CAS  Google Scholar 

  53. Brunner M, Vogelsang H, Greinwald R, et al. Colonic spread and serum pharmacokinetics of budesonide foam in patients with mildly to moderately active ulcerative colitis. Aliment Pharmacol Ther. 2005;22(5):463–70.

    Article  PubMed  CAS  Google Scholar 

  54. Rubin DT, Sandborn WJ, Bosworth B, et al. Budesonide foam has a favorable safety profile for inducing remission in mild-to-moderate ulcerative proctitis or proctosigmoiditis. Dig Dis Sci. 2015;60(11):3408–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bergman R, Parkes M. Systematic review: the use of mesalazine in inflammatory bowel disease. Aliment Pharmacol Ther. 2006;23(7):841–55.

    Article  PubMed  CAS  Google Scholar 

  56. Azad Khan AK, Piris J, Truelove SC. An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet. 1977;2(8044):892–5.

    Article  PubMed  CAS  Google Scholar 

  57. Frieri G, Giacomelli R, Pimpo M, et al. Mucosal 5-aminosalicylic acid concentration inversely correlates with severity of colonic inflammation in patients with ulcerative colitis. Gut. 2000;47(3):410–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Naganuma M, Iwao Y, Ogata H, et al. Measurement of colonic mucosal concentrations of 5-aminosalicylic acid is useful for estimating its therapeutic efficacy in distal ulcerative colitis: comparison of orally administered mesalamine and sulfasalazine. Inflamm Bowel Dis. 2001;7(3):221–5.

    Article  PubMed  CAS  Google Scholar 

  59. Rousseaux C, Lefebvre B, Dubuquoy L, et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005;201(8):1205–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dubuquoy L, Rousseaux C, Thuru X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut. 2006;55(9):1341–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mahida YR, Lamming CE, Gallagher A, et al. 5-Aminosalicylic acid is a potent inhibitor of interleukin 1 beta production in organ culture of colonic biopsy specimens from patients with inflammatory bowel disease. Gut. 1991;32(1):50–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Rachmilewitz D, Karmeli F, Schwartz LW, et al. Effect of aminophenols (5-ASA and 4-ASA) on colonic interleukin-1 generation. Gut. 1992;33(7):929–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kaiser GC, Yan F, Polk DB. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology. 1999;116(3):602–9.

    Article  PubMed  CAS  Google Scholar 

  64. Egan LJ, Mays DC, Huntoon CJ, et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem. 1999;274(37):26448–53.

    Article  PubMed  CAS  Google Scholar 

  65. Sharon P, Ligumsky M, Rachmilewitz D, et al. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75(4):638–40.

    PubMed  CAS  Google Scholar 

  66. Stenson WF, Lobos E. Sulfasalazine inhibits the synthesis of chemotactic lipids by neutrophils. J Clin Invest. 1982;69(2):494–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Stenson WF. Role of eicosanoids as mediators of inflammation in inflammatory bowel disease. Scand J Gastroenterol Suppl. 1990;172:13–8.

    Article  PubMed  CAS  Google Scholar 

  68. Ahnfelt-Ronne I, Nielsen OH, Christensen A, et al. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology. 1990;98(5 Pt 1):1162–9.

    Article  PubMed  CAS  Google Scholar 

  69. Shanahan F, Niederlehner A, Carramanzana N, et al. Sulfasalazine inhibits the binding of TNF alpha to its receptor. Immunopharmacology. 1990;20(3):217–24.

    Article  PubMed  CAS  Google Scholar 

  70. Lyakhovich A, Gasche C. Systematic review: molecular chemoprevention of colorectal malignancy by mesalazine. Aliment Pharmacol Ther. 2010;31(2):202–9.

    PubMed  CAS  Google Scholar 

  71. Bonovas S, Fiorino G, Lytras T, et al. Systematic review with meta-analysis: use of 5-aminosalicylates and risk of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(9):1179–92.

    Article  PubMed  CAS  Google Scholar 

  72. Klotz U, Maier KE. Pharmacology and pharmacokinetics of 5-aminosalicylic acid. Dig Dis Sci. 1987;32(12 Suppl):46S–50S.

    Article  PubMed  CAS  Google Scholar 

  73. Layer PH, Goebell H, Keller J, et al. Delivery and fate of oral mesalamine microgranules within the human small intestine. Gastroenterology. 1995;108(5):1427–33.

    Article  PubMed  CAS  Google Scholar 

  74. Goebell H, Klotz U, Nehlsen B, et al. Oroileal transit of slow release 5-aminosalicylic acid. Gut. 1993;34(5):669–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhou SY, Fleisher D, Pao LH, et al. Intestinal metabolism and transport of 5-aminosalicylate. Drug Metab Dispos. 1999;27(4):479–85.

    PubMed  CAS  Google Scholar 

  76. Liang E, Proudfoot J, Yazdanian M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res. 2000;17(10):1168–74.

    Article  PubMed  CAS  Google Scholar 

  77. Yacyshyn B, Maksymowych W, Bowen-Yacyshyn MB. Differences in P-glycoprotein-170 expression and activity between Crohn’s disease and ulcerative colitis. Hum Immunol. 1999;60(8):677–87.

    Article  PubMed  CAS  Google Scholar 

  78. Rijk MC, van Schaik A, van Tongeren JH. Disposition of 5-aminosalicylic acid by 5-aminosalicylic acid-delivering compounds. Scand J Gastroenterol. 1988;23(1):107–12.

    Article  PubMed  CAS  Google Scholar 

  79. Harris MS, Lichtenstein GR. Review article: delivery and efficacy of topical 5-aminosalicylic acid (mesalazine) therapy in the treatment of ulcerative colitis. Aliment Pharmacol Ther. 2011;33(9):996–1009.

    Article  PubMed  CAS  Google Scholar 

  80. Sonu I, Lin MV, Blonski W, et al. Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol Clin North Am. 2010;39(3):559–99.

    Article  PubMed  Google Scholar 

  81. Brunner M, Greinwald R, Kletter K, et al. Gastrointestinal transit and release of 5-aminosalicylic acid from 153Sm-labelled mesalazine pellets vs. tablets in male healthy volunteers. Aliment Pharmacol Ther. 2003;17(9):1163–9.

    Article  PubMed  CAS  Google Scholar 

  82. Rijk MC, van Hogezand RA, van Schaik A, et al. Disposition of 5-aminosalicylic acid from 5-aminosalicylic acid-delivering drugs during accelerated intestinal transit in healthy volunteers. Scand J Gastroenterol. 1989;24(10):1179–85.

    Article  PubMed  CAS  Google Scholar 

  83. Rijk MC, van Schaik A, van Tongeren JH. Disposition of mesalazine from mesalazine-delivering drugs in patients with inflammatory bowel disease, with and without diarrhoea. Scand J Gastroenterol. 1992;27(10):863–8.

    Article  PubMed  CAS  Google Scholar 

  84. Staerk Laursen L, Stokholm M, Bukhave K, et al. Disposition of 5-aminosalicylic acid by olsalazine and three mesalazine preparations in patients with ulcerative colitis: comparison of intraluminal colonic concentrations, serum values, and urinary excretion. Gut. 1990;31(11):1271–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Campieri M, Corbelli C, Gionchetti P, et al. Spread and distribution of 5-ASA colonic foam and 5-ASA enema in patients with ulcerative colitis. Dig Dis Sci. 1992;37(12):1890–7.

    Article  PubMed  CAS  Google Scholar 

  86. Schoonjans R, De Vos M, Schelfhout AM, et al. Distribution and concentrations of 5-aminosalicylic acid in rectosigmoid biopsy specimens after rectal administration. Dis Colon Rectum. 1996;39(7):788–93.

    Article  PubMed  CAS  Google Scholar 

  87. van Bodegraven AA, Boer RO, Lourens J, et al. Distribution of mesalazine enemas in active and quiescent ulcerative colitis. Aliment Pharmacol Ther. 1996;10(3):327–32.

    Article  PubMed  Google Scholar 

  88. Jacobsen BA, Abildgaard K, Rasmussen HH, et al. Availability of mesalazine (5-aminosalicylic acid) from enemas and suppositories during steady-state conditions. Scand J Gastroenterol. 1991;26(4):374–8.

    Article  PubMed  CAS  Google Scholar 

  89. Adler DJ, Korelitz BI. The therapeutic efficacy of 6-mercaptopurine in refractory ulcerative colitis. Am J Gastroenterol. 1990;85(6):717–22.

    PubMed  CAS  Google Scholar 

  90. Pearson DC, May GR, Fick GH, et al. Azathioprine and 6-mercaptopurine in Crohn disease. A meta-analysis. Ann Intern Med. 1995;123(2):132–42.

    Article  PubMed  CAS  Google Scholar 

  91. Sandborn WJ. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol. 1996;91(3):423–33.

    PubMed  CAS  Google Scholar 

  92. Korelitz BI, Adler DJ, Mendelsohn RA, et al. Long-term experience with 6-mercaptopurine in the treatment of Crohn’s disease. Am J Gastroenterol. 1993;88(8):1198–205.

    PubMed  CAS  Google Scholar 

  93. Fraser AG, Orchard TR, Jewell DP. The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut. 2002;50(4):485–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jharap B, Seinen ML, de Boer NK, et al. Thiopurine therapy in inflammatory bowel disease patients: analyses of two 8-year intercept cohorts. Inflamm Bowel Dis. 2010;16(9):1541–9.

    Article  PubMed  CAS  Google Scholar 

  95. McGovern DP, Travis SP, Duley J, et al. Azathioprine intolerance in patients with IBD may be imidazole-related and is independent of TPMT activity. Gastroenterology. 2002;122(3):838–9.

    Article  PubMed  CAS  Google Scholar 

  96. Hindorf U, Lindqvist M, Hildebrand H, et al. Adverse events leading to modification of therapy in a large cohort of patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(2):331–42.

    Article  PubMed  CAS  Google Scholar 

  97. Meijer B, Seinen ML, Leijte NN, et al. Clinical value of mercaptopurine after failing azathioprine therapy in patients with inflammatory bowel disease. Ther Drug Monit. 2016;38(4):463–70.

    Article  PubMed  CAS  Google Scholar 

  98. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43(4):329–39.

    Article  PubMed  CAS  Google Scholar 

  99. Derijks LJ, Gilissen LP, Hooymans PM, et al. Review article: thiopurines in inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(5):715–29.

    Article  PubMed  CAS  Google Scholar 

  100. Cuffari C, Hunt S, Bayless TM. Enhanced bioavailability of azathioprine compared to 6-mercaptopurine therapy in inflammatory bowel disease: correlation with treatment efficacy. Aliment Pharmacol Ther. 2000;14(8):1009–14.

    Article  PubMed  CAS  Google Scholar 

  101. Broekman MMTJ, Coenen MJH, Wante n GJ, et al. Risk factors for thiopurine-induced myelosuppression and infections in inflammatory bowel disease patients with a normal TPMT genotype. Aliment Pharmacol Ther. 2017;46(10):953–63.

  102. Lennard L, Lilleyman JS. Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit. 1996;18(4):328–34.

    Article  PubMed  CAS  Google Scholar 

  103. Van Asseldonk DP, de Boer NK, Peters GJ, et al. On therapeutic drug monitoring of thiopurines in inflammatory bowel disease; pharmacology, pharmacogenomics, drug intolerance and clinical relevance. Curr Drug Metab. 2009;10(9):981–97.

    Article  PubMed  Google Scholar 

  104. Dubinsky MC, Hassard PV, Seidman EG, et al. An open-label pilot study using thioguanine as a therapeutic alternative in Crohn’s disease patients resistant to 6-mercaptopurine therapy. Inflamm Bowel Dis. 2001;7(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  105. Derijks LJ, de Jong DJ, Gilissen LP, et al. 6-Thioguanine seems promising in azathioprine- or 6-mercaptopurine-intolerant inflammatory bowel disease patients: a short-term safety assessment. Eur J Gastroenterol Hepatol. 2003;15(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  106. van Asseldonk DP, Seinen ML, de Boer NK, et al. Hepatotoxicity associated with 6-methyl mercaptopurine formation during azathioprine and 6-mercaptopurine therapy does not occur on the short-term during 6-thioguanine therapy in IBD treatment. J Crohns Colitis. 2012;6(1):95–101.

    Article  PubMed  Google Scholar 

  107. Jharap B, de Boer N, Vos R, et al. Biotransformation of 6-thioguanine in inflammatory bowel disease patients: a comparison of oral and intravenous administration of 6-thioguanine. Br J Pharmacol. 2011;163(4):722–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Brox LW, Birkett L, Belch A. Clinical pharmacology of oral thioguanine in acute myelogenous leukemia. Cancer Chemother Pharmacol. 1981;6(1):35–8.

    Article  PubMed  CAS  Google Scholar 

  109. Lancaster DL, Patel N, Lennard L, et al. 6-Thioguanine in children with acute lymphoblastic leukaemia: influence of food on parent drug pharmacokinetics and 6-thioguanine nucleotide concentrations. Br J Clin Pharmacol. 2001;51(6):531–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lennard L, Davies HA, Lilleyman JS. Is 6-thioguanine more appropriate than 6-mercaptopurine for children with acute lymphoblastic leukaemia? Br J Cancer. 1993;68(1):186–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol. 2008;64(8):753–67.

    Article  PubMed  CAS  Google Scholar 

  112. Oancea I, Movva R, Das I, et al. Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism. Gut. 2017;66(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  113. Fairchild CR, Maybaum J, Kennedy KA. Concurrent unilateral chromatid damage and DNA strand breakage in response to 6-thioguanine treatment. Biochem Pharmacol. 1986;35(20):3533–41.

    Article  PubMed  CAS  Google Scholar 

  114. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+T lymphocytes. J Clin Invest. 2003;111(8):1133–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Seinen ML, van Nieuw Amerongen GP, de Boer NK, et al. Rac1 as a potential pharmacodynamic biomarker for thiopurine therapy in inflammatory bowel disease. Ther Drug Monit. 2016;38(5):621–7.

    Article  PubMed  CAS  Google Scholar 

  116. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118(4):705–13.

    Article  PubMed  CAS  Google Scholar 

  117. Dervieux T, Blanco JG, Krynetski EY, et al. Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res. 2001;61(15):5810–6.

    PubMed  CAS  Google Scholar 

  118. Gilissen LP, Derijks LJ, Verhoeven HM, et al. Pancytopenia due to high 6-methylmercaptopurine levels in a 6-mercaptopurine treated patient with Crohn’s disease. Dig Liver Dis. 2007;39(2):182–6.

    Article  PubMed  CAS  Google Scholar 

  119. Meijer B, Kreijne JE, van Moorsel SA, et al. 6-methylmercaptopurine induced leukocytopenia during thiopurine therapy in IBD patients. J Gastroenterol Hepatol. 2017;32(6):1182–90.

    Article  CAS  Google Scholar 

  120. Lennard L. TPMT in the treatment of Crohn’s disease with azathioprine. Gut. 2002;51(2):143–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lewis LD, Benin A, Szumlanski CL, et al. Olsalazine and 6-mercaptopurine-related bone marrow suppression: a possible drug-drug interaction. Clin Pharmacol Ther. 1997;62(4):464–75.

    Article  PubMed  CAS  Google Scholar 

  122. Lowry PW, Szumlanski CL, Weinshilboum RM, et al. Balsalazide and azathiprine or 6-mercaptopurine: evidence for a potentially serious drug interaction. Gastroenterology. 1999;116(6):1505–6.

    Article  PubMed  CAS  Google Scholar 

  123. Szumlanski CL, Weinshilboum RM. Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol. 1995;39(4):456–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Dewit O, Vanheuverzwyn R, Desager JP, et al. Interaction between azathioprine and aminosalicylates: an in vivo study in patients with Crohn’s disease. Aliment Pharmacol Ther. 2002;16(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  125. Gilissen LP, Bierau J, Derijks LJ, et al. The pharmacokinetic effect of discontinuation of mesalazine on mercaptopurine metabolite levels in inflammatory bowel disease patients. Aliment Pharmacol Ther. 2005;22(7):605–11.

    Article  PubMed  CAS  Google Scholar 

  126. de Boer NK, Wong DR, Jharap B, et al. Dose-dependent influence of 5-aminosalicylates on thiopurine metabolism. Am J Gastroenterol. 2007;102(12):2747–53.

    Article  PubMed  CAS  Google Scholar 

  127. Lowry PW, Franklin CL, Weaver AL, et al. Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut. 2001;49(5):656–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Woodson LC, Ames MM, Selassie CD, et al. Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives. Mol Pharmacol. 1983;24(3):471–8.

    PubMed  CAS  Google Scholar 

  129. Lysaa RA, Giverhaug T, Wold HL, et al. Inhibition of human thiopurine methyltransferase by furosemide, bendroflumethiazide and trichlormethiazide. Eur J Clin Pharmacol. 1996;49(5):393–6.

    Article  PubMed  CAS  Google Scholar 

  130. Kennedy DT, Hayney MS, Lake KD. Azathioprine and allopurinol: the price of an avoidable drug interaction. Ann Pharmacother. 1996;30(9):951–4.

    Article  PubMed  CAS  Google Scholar 

  131. Sanderson J, Ansari A, Marinaki T, et al. Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem. 2004;41(Pt 4):294–302.

    Article  PubMed  CAS  Google Scholar 

  132. Derijks LJ, Wong DR. Pharmacogenetics of thiopurines in inflammatory bowel disease. Curr Pharm Des. 2010;16(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  133. Krynetski EY, Evans WE. Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance. Pharmacology. 2000;61(3):136–46.

    Article  PubMed  CAS  Google Scholar 

  134. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32(5):651–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Schaeffeler E, Lang T, Zanger UM, et al. High-throughput genotyping of thiopurine S-methyltransferase by denaturing HPLC. Clin Chem. 2001;47(3):548–55.

    PubMed  CAS  Google Scholar 

  136. Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):407–17.

    Article  PubMed  CAS  Google Scholar 

  137. Hamdan-Khalil R, Gala JL, Allorge D, et al. Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. Biochem Pharmacol. 2005;69(3):525–9.

    Article  PubMed  CAS  Google Scholar 

  138. Schaeffeler E, Eichelbaum M, Reinisch W, et al. Three novel thiopurine S-methyltransferase allelic variants (TPMT*20, *21, *22)—association with decreased enzyme function. Hum Mutat. 2006;27(9):976.

    Article  PubMed  Google Scholar 

  139. Garat A, Cauffiez C, Renault N, et al. Characterisation of novel defective thiopurine S-methyltransferase allelic variants. Biochem Pharmacol. 2008;76(3):404–15.

    Article  PubMed  CAS  Google Scholar 

  140. Ujiie S, Sasaki T, Mizugaki M, et al. Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2–*24). Pharmacogenet Genomics. 2008;18(10):887–93.

    Article  PubMed  CAS  Google Scholar 

  141. Kham SK, Soh CK, Aw DC, et al. TPMT*26 (208F– > L), a novel mutation detected in a Chinese. Br J Clin Pharmacol. 2009;68(1):120–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Feng Q, Vannaprasaht S, Peng Y, et al. Thiopurine S-methyltransferase pharmacogenetics: functional characterization of a novel rapidly degraded variant allozyme. Biochem Pharmacol. 2010;79(7):1053–61.

    Article  PubMed  CAS  Google Scholar 

  143. Appell ML, Wennerstrand P, Peterson C, et al. Characterization of a novel sequence variant, TPMT*28, in the human thiopurine methyltransferase gene. Pharmacogenet Genomics. 2010;20(11):700–7.

    Article  PubMed  CAS  Google Scholar 

  144. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–14.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Weinshilboum R. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos. 2001;29(4 Pt 2):601–5.

    PubMed  CAS  Google Scholar 

  146. Reuther LO, Sonne J, Larsen N, et al. Thiopurine methyltransferase genotype distribution in patients with Crohn’s disease. Aliment Pharmacol Ther. 2003;17(1):65–8.

    Article  PubMed  CAS  Google Scholar 

  147. Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997;126(8):608–14.

    Article  PubMed  CAS  Google Scholar 

  148. Coulthard SA, Hall AG. Recent advances in the pharmacogenomics of thiopurine methyltransferase. Pharmacogenomics J. 2001;1(4):254–61.

    Article  PubMed  CAS  Google Scholar 

  149. Ansari A, Hassan C, Duley J, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16(10):1743–50.

    Article  PubMed  CAS  Google Scholar 

  150. Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit. 2004;26(2):186–91.

    Article  PubMed  CAS  Google Scholar 

  151. Kurzawski M, Gawronska-Szklarz B, Drozdzik M. Frequency distribution of thiopurine S-methyltransferase alleles in a polish population. Ther Drug Monit. 2004;26(5):541–5.

    Article  PubMed  CAS  Google Scholar 

  152. Kubota T, Chiba K. Frequencies of thiopurine S-methyltransferase mutant alleles (TPMT*2, *3A, *3B and *3C) in 151 healthy Japanese subjects and the inheritance of TPMT*3C in the family of a propositus. Br J Clin Pharmacol. 2001;51(5):475–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ameyaw MM, Collie-Duguid ES, Powrie RH, et al. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet. 1999;8(2):367–70.

    Article  PubMed  CAS  Google Scholar 

  154. Collie-Duguid ES, Pritchard SC, Powrie RH, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics. 1999;9(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  155. Pettersson B, Almer S, Albertioni F, et al. Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit. 2002;24(3):351–8.

    Article  PubMed  CAS  Google Scholar 

  156. Indjova D, Atanasova S, Shipkova M, et al. Phenotypic and genotypic analysis of thiopurine s-methyltransferase polymorphism in the bulgarian population. Ther Drug Monit. 2003;25(5):631–6.

    Article  PubMed  Google Scholar 

  157. Dubinsky MC, Yang H, Hassard PV, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122(4):904–15.

    Article  PubMed  CAS  Google Scholar 

  158. Coenen MJ, de Jong DJ, van Marrewijk CJ, et al. Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology. 2015;149(4):907-17.e7.

    Article  PubMed  Google Scholar 

  159. Sandborn WJ. Rational dosing of azathioprine and 6-mercaptopurine. Gut. 2001;48(5):591–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Seidman EG. Clinical use and practical application of TPMT enzyme and 6-mercaptopurine metabolite monitoring in IBD. Rev Gastroenterol Disord. 2003;3(Suppl 1):S30–8.

    PubMed  Google Scholar 

  161. Kaskas BA, Louis E, Hindorf U, et al. Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut. 2003;52(1):140–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. van Moorsel SA, Bevers N, Meurs M, et al. Azathioprine therapy in a pediatric TPMT—deficient patient—still an option. Ther Drug Monit. 2017;39(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  163. Derijks LJ, van Helden RB, Hommes DW, et al. Dosing azathioprine in thiopurine S-methyltransferase deficient inflammatory bowel disease patients. Gut. 2008;57(6):872.

    Article  PubMed  CAS  Google Scholar 

  164. Mares WG, Wong DR, Gilissen LP, et al. Safe 6-thioguanine therapy of a TPMT deficient Crohn’s disease patient by using therapeutic drug monitoring. J Crohns Colitis. 2009;3(2):128–30.

    Article  PubMed  CAS  Google Scholar 

  165. Feuerstein JD, Nguyen GC, Kupfer SS, et al. American Gastroenterological Association Institute Guideline on therapeutic drug monitoring in inflammatory bowel disease. Gastroenterology. 2017;153(3):827–34.

    Article  PubMed  Google Scholar 

  166. Vande Casteele N, Herfarth H, Katz J, et al. American Gastroenterological Association Institute Technical Review on the Role of Therapeutic Drug Monitoring in the Management of Inflammatory Bowel Diseases. Gastroenterology. 2017;153(3):835-857.e6.

    Article  PubMed  Google Scholar 

  167. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118(6):1025–30.

    Article  PubMed  CAS  Google Scholar 

  168. Lennard L, Singleton HJ. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr. 1992;583(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  169. Dervieux T, Boulieu R. Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in RBCs by HPLC. Clin Chem. 1998;44(3):551–5.

    PubMed  CAS  Google Scholar 

  170. Erdmann GR, France LA, Bostrom BC, et al. A reversed phase high performance liquid chromatography approach in determining total red blood cell concentrations of 6-thioguanine, 6-mercaptopurine, methylthioguanine, and methylmercaptopurine in a patient receiving thiopurine therapy. Biomed Chromatogr. 1990;4(2):47–51.

    Article  PubMed  CAS  Google Scholar 

  171. Armstrong VW, Shipkova M, von Ahsen N, et al. Analytic aspects of monitoring therapy with thiopurine medications. Ther Drug Monit. 2004;26(2):220–6.

    Article  PubMed  CAS  Google Scholar 

  172. Stefan C, Walsh W, Banka T, et al. Improved HPLC methodology for monitoring thiopurine metabolites in patients on thiopurine therapy. Clin Biochem. 2004;37(9):764–71.

    Article  PubMed  CAS  Google Scholar 

  173. Cuffari C, Theoret Y, Latour S, et al. 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut. 1996;39(3):401–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48(5):642–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Achkar JP, Stevens T, Easley K, et al. Indicators of clinical response to treatment with six-mercaptopurine or azathioprine in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2004;10(4):339–45.

    Article  PubMed  Google Scholar 

  176. Hindorf U, Lyrenas E, Nilsson A, et al. Monitoring of long-term thiopurine therapy among adults with inflammatory bowel disease. Scand J Gastroenterol. 2004;39(11):1105–12.

    Article  PubMed  CAS  Google Scholar 

  177. Belaiche J, Desager JP, Horsmans Y, et al. Therapeutic drug monitoring of azathioprine and 6-mercaptopurine metabolites in Crohn disease. Scand J Gastroenterol. 2001;36(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  178. Lowry PW, Franklin CL, Weaver AL, et al. Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease. Gut. 2001;49(5):665–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Gupta P, Gokhale R, Kirschner BS. 6-mercaptopurine metabolite levels in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2001;33(4):450–4.

    Article  PubMed  CAS  Google Scholar 

  180. Goldenberg BA, Rawsthorne P, Bernstein CN. The utility of 6-thioguanine metabolite levels in managing patients with inflammatory bowel disease. Am J Gastroenterol. 2004;99(9):1744–8.

    Article  PubMed  CAS  Google Scholar 

  181. Sandborn WJ. 6-MP metabolite levels: a potential guide to Crohn’s disease therapy. Gastroenterology. 1997;113(2):690–2.

    Article  PubMed  CAS  Google Scholar 

  182. Cohen RD. Forecast for using metabolite measurements in the dosing of azathioprine or 6-mercaptopurine for IBD patients: “partly cloudy”. Gastroenterology. 2002;122(7):2082–4 (discussion 2084).

    Article  PubMed  Google Scholar 

  183. Derijks LJ, Gilissen LP, Engels LG, et al. Pharmacokinetics of 6-mercaptopurine in patients with inflammatory bowel disease: implications for therapy. Ther Drug Monit. 2004;26(3):311–8.

    Article  PubMed  CAS  Google Scholar 

  184. Reinshagen M, Schutz E, Armstrong VW, et al. 6-Thioguanine nucleotide-adapted azathioprine therapy does not lead to higher remission rates than standard therapy in chronic active crohn disease: results from a randomized, controlled. Open Trial. Clin Chem. 2007;53(7):1306–14.

    PubMed  CAS  Google Scholar 

  185. van Asseldonk DP, Sanderson J, de Boer NK, et al. Difficulties and possibilities with thiopurine therapy in inflammatory bowel disease—proceedings of the first Thiopurine Task Force meeting. Dig Liver Dis. 2011;43(4):270–6.

    Article  PubMed  Google Scholar 

  186. Sparrow MP, Hande SA, Friedman S, et al. Allopurinol safely and effectively optimizes tioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine. Aliment Pharmacol Ther. 2005;22(5):441–6.

    Article  PubMed  CAS  Google Scholar 

  187. Appell ML, Wagner A, Hindorf U. A skewed thiopurine metabolism is a common clinical phenomenon that can be successfully managed with a combination of low-dose azathioprine and allopurinol. J Crohns Colitis. 2013;7(6):510–3.

    Article  PubMed  Google Scholar 

  188. Gardiner SJ, Gearry RB, Burt MJ, et al. Allopurinol might improve response to azathioprine and 6-mercaptopurine by correcting an unfavorable metabolite ratio. J Gastroenterol Hepatol. 2011;26(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  189. Hoentjen F, Seinen ML, Hanauer SB, et al. Safety and effectiveness of long-term allopurinol-thiopurine maintenance treatment in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(2):363–9.

    Article  PubMed  Google Scholar 

  190. Seinen ML, van Asseldonk DP, de Boer NK, et al. The effect of allopurinol and low-dose thiopurine combination therapy on the activity of three pivotal thiopurine metabolizing enzymes: results from a prospective pharmacological study. J Crohns Colitis. 2013;7(10):812–9.

    Article  PubMed  CAS  Google Scholar 

  191. Duley JA, Chocair PR, Florin TH. Observations on the use of allopurinol in combination with azathioprine or mercaptopurine. Aliment Pharmacol Ther. 2005;22(11–12):1161–2.

    Article  PubMed  CAS  Google Scholar 

  192. Blaker PA, Arenas-Hernandez M, Smith MA, et al. Mechanism of allopurinol induced TPMT inhibition. Biochem Pharmacol. 2013;86(4):539–47.

    Article  PubMed  CAS  Google Scholar 

  193. Wong DR, Coenen MJ, Vermeulen SH, et al. Early Assessment of Thiopurine Metabolites Identifies Patients at Risk of Thiopurine-induced Leukopenia in Inflammatory Bowel Disease. J Crohns Colitis. 2017;11(2):175–84.

  194. Wong DR, Coenen MJ, Derijks LJ, et al. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(3):391–402.

    Article  PubMed  CAS  Google Scholar 

  195. Baert F, Rutgeerts P. 6-Thioguanine: a naked bullet? (Or how pharmacogenomics can make old drugs brand new). Inflamm Bowel Dis. 2001;7(3):190–1.

    Article  PubMed  CAS  Google Scholar 

  196. Lancaster DL, Patel N, Lennard L, et al. Leucocyte versus erythrocyte thioguanine nucleotide concentrations in children taking thiopurines for acute lymphoblastic leukaemia. Cancer Chemother Pharmacol. 2002;50(1):33–6.

    Article  PubMed  CAS  Google Scholar 

  197. Herrlinger KR, Deibert P, Schwab M, et al. Remission maintenance by tioguanine in chronic active Crohn’s disease. Aliment Pharmacol Ther. 2003;17(12):1459–64.

    Article  PubMed  CAS  Google Scholar 

  198. de Boer NK, Derijks LJ, Gilissen LP, et al. On tolerability and safety of a maintenance treatment with 6-thioguanine in azathioprine or 6-mercaptopurine intolerant IBD patients. World J Gastroenterol. 2005;11(35):5540–4.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Dubinsky MC, Vasiliauskas EA, Singh H, et al. 6-Thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterology. 2003;125(2):298–303.

    Article  PubMed  CAS  Google Scholar 

  200. Geller SA, Dubinsky MC, Poordad FF, et al. Early hepatic nodular hyperplasia and submicroscopic fibrosis associated with 6-thioguanine therapy in inflammatory bowel disease. Am J Surg Pathol. 2004;28(9):1204–11.

    Article  PubMed  Google Scholar 

  201. Naber AH, Van Haelst U, Yap SH. Nodular regenerative hyperplasia of the liver: an important cause of portal hypertension in non-cirrhotic patients. J Hepatol. 1991;12(1):94–9.

    Article  PubMed  CAS  Google Scholar 

  202. Stromeyer FW, Ishak KG. Nodular transformation (nodular “regenerative” hyperplasia) of the liver. A clinicopathologic study of 30 cases. Hum Pathol. 1981;12(1):60–71.

    Article  PubMed  CAS  Google Scholar 

  203. Seinen ML, van Asseldonk DP, de Boer NK, et al. Nodular regenerative hyperplasia of the liver in patients with IBD treated with allopurinol-thiopurine combination therapy. Inflamm Bowel Dis. 2017;23(3):448–52.

    Article  PubMed  Google Scholar 

  204. de Boer NK, Reinisch W, Teml A, et al. 6-Thioguanine treatment in inflammatory bowel disease: a critical appraisal by a European 6-TG working party. Digestion. 2006;73(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  205. Vernier-Massouille G, Cosnes J, Lemann M, et al. Nodular regenerative hyperplasia in patients with inflammatory bowel disease treated with azathioprine. Gut. 2007;56(10):1404–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Ferlitsch A, Teml A, Reinisch W, et al. 6-Thioguanine associated nodular regenerative hyperplasia in patients with inflammatory bowel disease may induce portal hypertension. Am J Gastroenterol. 2007;102(11):2495–503.

    Article  PubMed  CAS  Google Scholar 

  207. van Asseldonk DP, Jharap B, Verheij J, et al. The prevalence of nodular regenerative hyperplasia in inflammatory bowel disease patients treated with thioguanine is not associated with clinically significant liver disease. Inflamm Bowel Dis. 2016;22(9):2112–20.

    Article  PubMed  Google Scholar 

  208. Jharap B, van Asseldonk DP, de Boer NK, et al. Diagnosing nodular regenerative hyperplasia of the liver is thwarted by low interobserver agreement. PLoS One. 2015;10(6):e0120299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Derijks LJ, Gilissen LP, de Boer NK, et al. 6-Thioguanine-related hepatotoxicity in patients with inflammatory bowel disease: dose or level dependent? J Hepatol. 2006;44(4):821–2.

    Article  PubMed  Google Scholar 

  210. Feagan BG, Rochon J, Fedorak RN, et al. Methotrexate for the treatment of Crohn’s disease. The North American Crohn’s Study Group Investigators. N Engl J Med. 1995;332(5):292–7.

    Article  PubMed  CAS  Google Scholar 

  211. Feagan BG, Fedorak RN, Irvine EJ, et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N Engl J Med. 2000;342(22):1627–32.

    Article  PubMed  CAS  Google Scholar 

  212. McDonald JW, Wang Y, Tsoulis DJ, et al. Methotrexate for induction of remission in refractory Crohn’s disease. Cochrane Database Syst Rev. 2014;8:CD003459.

    Google Scholar 

  213. Carbonnel F, Colombel JF, Filippi J, et al. Methotrexate is not superior to placebo for inducing steroid-free remission, but induces steroid-free clinical remission in a larger proportion of patients with ulcerative colitis. Gastroenterology. 2016;150(2):380-8.e4.

    Article  PubMed  CAS  Google Scholar 

  214. Oren R, Moshkowitz M, Odes S, et al. Methotrexate in chronic active Crohn’s disease: a double-blind, randomized. Israeli multicenter trial. Am J Gastroenterol. 1997;92(12):2203–9.

    PubMed  CAS  Google Scholar 

  215. Arora S, Katkov W, Cooley J, et al. Methotrexate in Crohn’s disease: results of a randomized, double-blind, placebo-controlled trial. Hepatogastroenterology. 1999;46(27):1724–9.

    PubMed  CAS  Google Scholar 

  216. Seinen ML, Ponsioen CY, de Boer NK, et al. Sustained clinical benefit and tolerability of methotrexate monotherapy after thiopurine therapy in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2013;11(6):667–72.

    Article  PubMed  CAS  Google Scholar 

  217. Teresi ME, Crom WR, Choi KE, et al. Methotrexate bioavailability after oral and intramuscular administration in children. J Pediatr. 1987;110(5):788–92.

    Article  PubMed  CAS  Google Scholar 

  218. Pinkerton CR, Glasgow JF, Bridges JM, et al. Enterotoxic effect of methotrexate: does it influence the drug’s absorption in children with acute lymphoblastic leukaemia? Br Med J (Clin Res Ed). 1981;282(6272):1276–7.

    Article  PubMed Central  CAS  Google Scholar 

  219. Egan LJ, Sandborn WJ, Mays DC, et al. Systemic and intestinal pharmacokinetics of methotrexate in patients with inflammatory bowel disease. Clin Pharmacol Ther. 1999;65(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  220. McGuire JJ, Hsieh P, Bertino JR. Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochem Pharmacol. 1984;33(8):1355–61.

    Article  PubMed  CAS  Google Scholar 

  221. Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146(5):489–503.

    Article  PubMed  CAS  Google Scholar 

  222. Grim J, Chladek J, Martinkova J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet. 2003;42(2):139–51.

    Article  PubMed  CAS  Google Scholar 

  223. Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet. 1978;3(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  224. Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol. 2016;12(12):731–42.

    Article  PubMed  CAS  Google Scholar 

  225. Egan LJ, Sandborn WJ. Methotrexate for inflammatory bowel disease: pharmacology and preliminary results. Mayo Clin Proc. 1996;71(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  226. Edno L, Bressolle F, Gomeni R, et al. Total and free methotrexate pharmacokinetics in rheumatoid arthritis patients. Ther Drug Monit. 1996;18(2):128–34.

    Article  PubMed  CAS  Google Scholar 

  227. Weinblatt ME, Maier AL, Coblyn JS. Low dose leucovorin does not interfere with the efficacy of methotrexate in rheumatoid arthritis: an 8 week randomized placebo controlled trial. J Rheumatol. 1993;20(6):950–2.

    PubMed  CAS  Google Scholar 

  228. Herrlinger KR, Cummings JR, Barnardo MC, et al. The pharmacogenetics of methotrexate in inflammatory bowel disease. Pharmacogenet Genomics. 2005;15(10):705–11.

    Article  PubMed  CAS  Google Scholar 

  229. Ahern M, Booth J, Loxton A, et al. Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol. 1988;15(9):1356–60.

    PubMed  CAS  Google Scholar 

  230. Basin KS, Escalante A, Beardmore TD. Severe pancytopenia in a patient taking low dose methotrexate and probenecid. J Rheumatol. 1991;18(4):609–10.

    PubMed  CAS  Google Scholar 

  231. Govert JA, Patton S, Fine RL. Pancytopenia from using trimethoprim and methotrexate. Ann Intern Med. 1992;117(10):877–8.

    Article  PubMed  CAS  Google Scholar 

  232. Al-Awadhi A, Dale P, McKendry RJ. Pancytopenia associated with low dose methotrexate therapy. A regional survey. J Rheumatol. 1993;20(7):1121–5.

    PubMed  CAS  Google Scholar 

  233. Al-Quteimat OM, Al-Badaineh MA. Methotrexate and trimethoprim-sulphamethoxazole: extremely serious and life-threatening combination. J Clin Pharm Ther. 2013;38(3):203–5.

    Article  PubMed  CAS  Google Scholar 

  234. Moskovitz DN, Van Assche G, Maenhout B, et al. Incidence of colectomy during long-term follow-up after cyclosporine-induced remission of severe ulcerative colitis. Clin Gastroenterol Hepatol. 2006;4(6):760–5.

    Article  PubMed  CAS  Google Scholar 

  235. Campbell S, Travis S, Jewell D. Ciclosporin use in acute ulcerative colitis: a long-term experience. Eur J Gastroenterol Hepatol. 2005;17(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  236. Bamba S, Tsujikawa T, Inatomi O, et al. Factors affecting the efficacy of cyclosporin A therapy for refractory ulcerative colitis. J Gastroenterol Hepatol. 2010;25(3):494–8.

    Article  PubMed  CAS  Google Scholar 

  237. Walch A, Meshkat M, Vogelsang H, et al. Long-term outcome in patients with ulcerative colitis treated with intravenous cyclosporine A is determined by previous exposure to thiopurines. J Crohns Colitis. 2010;4(4):398–404.

    Article  PubMed  Google Scholar 

  238. Feagan BG, McDonald JW, Rochon J, et al. Low-dose cyclosporine for the treatment of Crohn’s disease. The Canadian Crohn’s Relapse Prevention Trial Investigators. N Engl J Med. 1994;330(26):1846–51.

    Article  PubMed  CAS  Google Scholar 

  239. Nicholls S, Domizio P, Williams CB, et al. Cyclosporin as initial treatment for Crohn’s disease. Arch Dis Child. 1994;71(3):243–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Stange EF, Modigliani R, Pena AS, et al. European trial of cyclosporine in chronic active Crohn’s disease: a 12-month study. The European Study Group. Gastroenterology. 1995;109(3):774–82.

    Article  PubMed  CAS  Google Scholar 

  241. Santos JV, Baudet JA, Casellas FJ, et al. Intravenous cyclosporine for steroid-refractory attacks of Crohn’s disease. Short- and long-term results. J Clin Gastroenterol. 1995;20(3):207–10.

    Article  PubMed  CAS  Google Scholar 

  242. Sandborn WJ, Present DH, Isaacs KL, et al. Tacrolimus for the treatment of fistulas in patients with Crohn’s disease: a randomized, placebo-controlled trial. Gastroenterology. 2003;125(2):380–8.

    Article  PubMed  CAS  Google Scholar 

  243. Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992;13(4):136–42.

    Article  PubMed  CAS  Google Scholar 

  244. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24(6):472–95.

    Article  PubMed  CAS  Google Scholar 

  245. Friman S, Backman L. A new microemulsion formulation of cyclosporin: pharmacokinetic and clinical features. Clin Pharmacokinet. 1996;30(3):181–93.

    Article  PubMed  CAS  Google Scholar 

  246. Noble S, Markham A. Cyclosporin. A review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral). Drugs. 1995;50(5):924–41.

    Article  PubMed  CAS  Google Scholar 

  247. Wallemacq PE, Lhoest G, Latinne D, et al. Isolation, characterization and in vitro activity of human cyclosporin A metabolites. Transplant Proc. 1989;21(1 Pt 1):906–10.

    PubMed  CAS  Google Scholar 

  248. Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.

    PubMed  CAS  Google Scholar 

  249. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther. 1997;62(3):248–60.

    Article  PubMed  CAS  Google Scholar 

  250. Brynskov J, Freund L, Campanini MC, et al. Cyclosporin pharmacokinetics after intravenous and oral administration in patients with Crohn’s disease. Scand J Gastroenterol. 1992;27(11):961–7.

    Article  PubMed  CAS  Google Scholar 

  251. Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (Part I). Clin Pharmacokinet. 1990;19(4):319–32.

    Article  PubMed  CAS  Google Scholar 

  252. Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (Part II). Clin Pharmacokinet. 1990;19(5):400–15.

    Article  PubMed  CAS  Google Scholar 

  253. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther. 1995;58(1):15–9.

    Article  PubMed  CAS  Google Scholar 

  254. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998;18(1):84–112.

    PubMed  CAS  Google Scholar 

  255. Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet. 1997;33(2):103–21.

    Article  PubMed  CAS  Google Scholar 

  256. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther. 1992;52(5):453–7.

    Article  PubMed  CAS  Google Scholar 

  257. Greeson JM, Sanford B, Monti DA. St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology (Berl). 2001;153(4):402–14.

    Article  CAS  Google Scholar 

  258. Van Assche G, D’Haens G, Noman M, et al. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology. 2003;125(4):1025–31.

    Article  PubMed  Google Scholar 

  259. Plosker GL, Foster RH. Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs. 2000;59(2):323–89.

    Article  PubMed  CAS  Google Scholar 

  260. Nagase K, Iwasaki K, Nozaki K, et al. Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol. 1994;46(2):113–7.

    Article  PubMed  CAS  Google Scholar 

  261. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.

    Article  PubMed  CAS  Google Scholar 

  262. Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab. 2002;3(3):275–87.

    Article  PubMed  CAS  Google Scholar 

  263. Moller A, Iwasaki K, Kawamura A, et al. The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab Dispos. 1999;27(6):633–6.

    PubMed  CAS  Google Scholar 

  264. Bhaloo S, Prasad GV. Severe reduction in tacrolimus levels with rifampin despite multiple cytochrome P450 inhibitors: a case report. Transplant Proc. 2003;35(7):2449–51.

    Article  PubMed  CAS  Google Scholar 

  265. Hebert MF, Lam AY. Diltiazem increases tacrolimus concentrations. Ann Pharmacother. 1999;33(6):680–2.

    Article  PubMed  CAS  Google Scholar 

  266. Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf. 1997;16(4):267–78.

    Article  PubMed  CAS  Google Scholar 

  267. Ogata H, Matsui T, Nakamura M, et al. A randomised dose finding study of oral tacrolimus (FK506) therapy in refractory ulcerative colitis. Gut. 2006;55(9):1255–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Hiraoka S, Kato J, Moritou Y, et al. The earliest trough concentration predicts the dose of tacrolimus required for remission induction therapy in ulcerative colitis patients. BMC Gastroenterol. 2015;15:53-015-0285-3.

    Article  CAS  Google Scholar 

  269. van Dullemen HM, van Deventer SJ, Hommes DW, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 1995;109(1):129–35.

    Article  PubMed  Google Scholar 

  270. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35.

    Article  PubMed  CAS  Google Scholar 

  271. Baert FJ, D’Haens GR, Peeters M, et al. Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn’s ileocolitis. Gastroenterology. 1999;116(1):22–8.

    Article  PubMed  CAS  Google Scholar 

  272. Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology. 2009;136(4):1182–97.

    Article  PubMed  CAS  Google Scholar 

  273. Nesbitt A, Fossati G, Bergin M, et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis. 2007;13(11):1323–32.

    Article  PubMed  Google Scholar 

  274. Vos AC, Wildenberg ME, Duijvestein M, et al. Anti-tumor necrosis factor-alpha antibodies induce regulatory macrophages in an Fc region-dependent manner. Gastroenterology. 2011;140(1):221–30.

    Article  PubMed  CAS  Google Scholar 

  275. Ordas I, Mould DR, Feagan BG, et al. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91(4):635–46.

    Article  PubMed  CAS  Google Scholar 

  276. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Article  PubMed  CAS  Google Scholar 

  277. Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med. 2004;350(9):876–85.

    Article  PubMed  CAS  Google Scholar 

  278. Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76.

    Article  PubMed  CAS  Google Scholar 

  279. Lichtenstein GR, Yan S, Bala M, et al. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology. 2005;128(4):862–9.

    Article  PubMed  CAS  Google Scholar 

  280. Jeuring SF, van den Heuvel TR, Liu LY, et al. Improvements in the long-term outcome of Crohn’s disease over the past two decades and the relation to changes in medical management: results from the Population-Based IBDSL Cohort. Am J Gastroenterol. 2017;112(2):325–36.

    Article  PubMed  Google Scholar 

  281. Hanauer SB, Sandborn WJ, Rutgeerts P, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130(2):323–33 (quiz 591).

    Article  PubMed  CAS  Google Scholar 

  282. Sandborn WJ, Hanauer SB, Rutgeerts P, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56(9):1232–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Reinisch W, Sandborn WJ, Hommes DW, et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut. 2011;60(6):780–7.

    Article  PubMed  CAS  Google Scholar 

  284. Sandborn WJ, van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257-65.e1-3.

    Article  PubMed  CAS  Google Scholar 

  285. Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85–95 (quiz e14–5).

    Article  PubMed  CAS  Google Scholar 

  286. Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):96-109.e1.

    PubMed  Google Scholar 

  287. Martineau C, Flourie B, Wils P, et al. Efficacy and safety of golimumab in Crohn’s disease: a French national retrospective study. Aliment Pharmacol Ther. 2017;46(11–12):1077–84.

    Article  PubMed  CAS  Google Scholar 

  288. Sandborn WJ, Feagan BG, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357(3):228–38.

    Article  PubMed  CAS  Google Scholar 

  289. Schreiber S, Khaliq-Kareemi M, Lawrance IC, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357(3):239–50.

    Article  PubMed  CAS  Google Scholar 

  290. Bendtzen K, Ainsworth M, Steenholdt C, et al. Individual medicine in inflammatory bowel disease: monitoring bioavailability, pharmacokinetics and immunogenicity of anti-tumour necrosis factor-alpha antibodies. Scand J Gastroenterol. 2009;44(7):774–81.

    Article  PubMed  CAS  Google Scholar 

  291. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    Article  PubMed  CAS  Google Scholar 

  292. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    Article  PubMed  CAS  Google Scholar 

  293. Mould DR. The pharmacokinetics of biologics: a primer. Dig Dis. 2015;33(Suppl 1):61–9.

    Article  PubMed  Google Scholar 

  294. Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs. 2010;24(1):23–39.

    Article  PubMed  CAS  Google Scholar 

  295. Klotz U, Teml A, Schwab M. Clinical pharmacokinetics and use of infliximab. Clin Pharmacokinet. 2007;46(8):645–60.

    Article  PubMed  CAS  Google Scholar 

  296. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59.

    Article  PubMed  CAS  Google Scholar 

  297. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  PubMed  CAS  Google Scholar 

  298. Comber PG, Gomez F, Rossman MD, et al. Receptors for the Fc portion of immunoglobulin G (Fc gamma R) on human monocytes and macrophages. Prog Clin Biol Res. 1989;297:273–85.

    PubMed  CAS  Google Scholar 

  299. Cohen-Solal JF, Cassard L, Fridman WH, et al. Fc gamma receptors. Immunol Lett. 2004;92(3):199–205.

    Article  PubMed  CAS  Google Scholar 

  300. Louis E, El Ghoul Z, Vermeire S, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther. 2004;19(5):511–9.

    Article  PubMed  CAS  Google Scholar 

  301. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabolism. Nature. 1964;203:1352–4.

    Article  PubMed  CAS  Google Scholar 

  302. Telleman P, Junghans RP. The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology. 2000;100(2):245–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Ternant D, Paintaud G. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther. 2005;5(Suppl 1):S37–47.

    Article  PubMed  CAS  Google Scholar 

  305. Cornillie F, Shealy D, D’Haens G, et al. Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn’s disease. Aliment Pharmacol Ther. 2001;15(4):463–73.

    Article  PubMed  CAS  Google Scholar 

  306. Weisman MH, Moreland LW, Furst DE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    Article  PubMed  CAS  Google Scholar 

  307. Olsen T, Goll R, Cui G, et al. TNF-alpha gene expression in colorectal mucosa as a predictor of remission after induction therapy with infliximab in ulcerative colitis. Cytokine. 2009;46(2):222–7.

    Article  PubMed  CAS  Google Scholar 

  308. Takeuchi T, Miyasaka N, Tatsuki Y, et al. Baseline tumour necrosis factor alpha levels predict the necessity for dose escalation of infliximab therapy in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(7):1208–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Beeken WL, Busch HJ, Sylwester DL. Intestinal protein loss in Crohn’s disease. Gastroenterology. 1972;62(2):207–15.

    PubMed  CAS  Google Scholar 

  310. Kapel N, Meillet D, Favennec L, et al. Evaluation of intestinal clearance and faecal excretion of alpha 1-antiproteinase and immunoglobulins during Crohn’s disease and ulcerative colitis. Eur J Clin Chem Clin Biochem. 1992;30(4):197–202.

    PubMed  CAS  Google Scholar 

  311. Brandse JF, van den Brink GR, Wildenberg ME, et al. Loss of Infliximab Into Feces Is Associated With Lack of Response to Therapy in Patients With Severe Ulcerative Colitis. Gastroenterology. 2015;149(2):350-5.e2.

    Article  PubMed  CAS  Google Scholar 

  312. Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1(6):457–62.

    Article  PubMed  CAS  Google Scholar 

  313. Ternant D, Aubourg A, Magdelaine-Beuzelin C, et al. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther Drug Monit. 2008;30(4):523–9.

    PubMed  CAS  Google Scholar 

  314. Seow CH, Newman A, Irwin SP, et al. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  315. Maser EA, Villela R, Silverberg MS, et al. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4(10):1248–54.

    Article  PubMed  CAS  Google Scholar 

  316. Chiu YL, Rubin DT, Vermeire S, et al. Serum adalimumab concentration and clinical remission in patients with Crohn’s disease. Inflamm Bowel Dis. 2013;19(6):1112–22.

    Article  PubMed  Google Scholar 

  317. Mazor Y, Almog R, Kopylov U, et al. Adalimumab drug and antibody levels as predictors of clinical and laboratory response in patients with Crohn’s disease. Aliment Pharmacol Ther. 2014;40(6):620–8.

    Article  PubMed  CAS  Google Scholar 

  318. Vande Casteele N, Gils A, Singh S, et al. Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am J Gastroenterol. 2013;108(6):962–71.

    Article  PubMed  CAS  Google Scholar 

  319. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    Article  PubMed  CAS  Google Scholar 

  320. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95.

    Article  PubMed  CAS  Google Scholar 

  321. Vermeire S, Noman M, Van Assche G, et al. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut. 2007;56(9):1226–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Ben-Horin S, Waterman M, Kopylov U, et al. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11(4):444–7.

    Article  PubMed  CAS  Google Scholar 

  323. Khanna R, Sattin BD, Afif W, et al. Review article: a clinician’s guide for therapeutic drug monitoring of infliximab in inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38(5):447–59.

    Article  PubMed  CAS  Google Scholar 

  324. Roblin X, Boschetti G, Williet N, et al. Azathioprine dose reduction in inflammatory bowel disease patients on combination therapy: an open-label, prospective and randomised clinical trial. Aliment Pharmacol Ther. 2017;46(2):142–9.

    Article  PubMed  CAS  Google Scholar 

  325. Yarur AJ, Kubiliun MJ, Czul F, et al. Concentrations of 6-thioguanine nucleotide correlate with trough levels of infliximab in patients with inflammatory bowel disease on combination therapy. Clin Gastroenterol Hepatol. 2015;13(6):1118-24.e3.

    Article  PubMed  CAS  Google Scholar 

  326. Watanabe K, Matsumoto T, Hisamatsu T, et al. Clinical and pharmacokinetic factors associated with adalimumab-induced mucosal healing in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2018 [Epub ahead of print].

  327. Nakase H, Motoya S, Matsumoto T, et al. Significance of measurement of serum trough level and anti-drug antibody of adalimumab as personalised pharmacokinetics in patients with Crohn’s disease: a subanalysis of the DIAMOND trial. Aliment Pharmacol Ther. 2017;46(9):873–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Adedokun OJ, Xu Z, Marano CW, et al. Pharmacokinetics and exposure-response relationship of golimumab in patients with moderately-to-severely active ulcerative colitis: results from phase 2/3 PURSUIT induction and maintenance studies. J Crohns Colitis. 2017;11(1):35–46.

    Article  PubMed  Google Scholar 

  329. Colombel JF, Sandborn WJ, Allez M, et al. Association between plasma concentrations of certolizumab pegol and endoscopic outcomes of patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12(3):423-31.e1.

    PubMed  Google Scholar 

  330. Papamichael K, Cheifetz AS. Therapeutic drug monitoring in IBD: the new standard-of-care for anti-TNF therapy. Am J Gastroenterol. 2017;112(5):673–6.

    Article  PubMed  Google Scholar 

  331. American Gastroenterological Association. Therapeutic drug monitoring in inflammatory bowel disease: clinical decision support tool. Gastroenterology. 2017;153(3):858–9.

    Article  Google Scholar 

  332. Mitrev N, Vande Casteele N, Seow CH, et al. Review article: consensus statements on therapeutic drug monitoring of anti-tumour necrosis factor therapy in inflammatory bowel diseases. Aliment Pharmacol Ther. 2017;46(11–12):1037–53.

    Article  PubMed  CAS  Google Scholar 

  333. Roblin X, Rinaudo M, Del Tedesco E, et al. Development of an algorithm incorporating pharmacokinetics of adalimumab in inflammatory bowel diseases. Am J Gastroenterol. 2014;109(8):1250–6.

    Article  PubMed  CAS  Google Scholar 

  334. Steenholdt C, Brynskov J, Thomsen OO, et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut. 2014;63(6):919–27.

    Article  PubMed  Google Scholar 

  335. Vaughn BP, Sandborn WJ, Cheifetz AS. Biologic concentration testing in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(6):1435–42.

    PubMed  PubMed Central  Google Scholar 

  336. D’Haens G, Vermeire S, Lambrecht G, et al. Increasing Infliximab Dose Based on Symptoms, Biomarkers, and Serum Drug Concentrations Does Not Increase Clinical, Endoscopic, or Corticosteroid-Free Remission in Patients With Active Luminal Crohn’s Disease. Gastroenterology. 2018. https://doi.org/10.1053/j.gastro.2018.01.004 (Epub 6 Jan 2018).

    Article  PubMed  Google Scholar 

  337. Vande Casteele N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology. 2015;148(7):1320-9.e3.

    Article  PubMed  CAS  Google Scholar 

  338. Ungar B, Levy I, Yavne Y, et al. Optimizing Anti-TNF-alpha Therapy: Serum Levels of Infliximab and Adalimumab Are Associated With Mucosal Healing in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2016;14(4):550-557.e2.

    Article  PubMed  CAS  Google Scholar 

  339. Yarur AJ, Kanagala V, Stein DJ, et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment Pharmacol Ther. 2017;45(7):933–40.

    Article  PubMed  CAS  Google Scholar 

  340. Paul S, Moreau AC, Del Tedesco E, et al. Pharmacokinetics of adalimumab in inflammatory bowel diseases: a systematic review and meta-analysis. Inflamm Bowel Dis. 2014;20(7):1288–95.

    Article  PubMed  Google Scholar 

  341. Bodini G, Giannini EG, Savarino V, et al. Adalimumab trough serum levels and anti-adalimumab antibodies in the long-term clinical outcome of patients with Crohn’s disease. Scand J Gastroenterol. 2016;51(9):1081–6.

    Article  PubMed  CAS  Google Scholar 

  342. Detrez I, Dreesen E, Van Stappen T, et al. Variability in golimumab exposure: a ‘Real-Life’ observational study in active ulcerative colitis. J Crohns Colitis. 2016;10(5):575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.

    Article  PubMed  CAS  Google Scholar 

  344. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21.

    Article  PubMed  CAS  Google Scholar 

  345. Rosario M, Dirks NL, Milch C, et al. A Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Vedolizumab. Clin Pharmacokinet. 2017;56(11):1287–301.

  346. Bye WA, Jairath V, Travis SPL. Systematic review: the safety of vedolizumab for the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  347. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80.

    Article  PubMed  CAS  Google Scholar 

  348. Berger JR. Natalizumab and progressive multifocal leucoencephalopathy. Ann Rheum Dis. 2006;65(Suppl 3):iii48–53.

    PubMed  PubMed Central  Google Scholar 

  349. Wyant T, Fedyk E, Abhyankar B. An overview of the mechanism of action of the monoclonal antibody vedolizumab. J Crohns Colitis. 2016;10(12):1437–44.

    Article  PubMed  Google Scholar 

  350. Rosario M, Dirks NL, Gastonguay MR, et al. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther. 2015;42(2):188–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Milch C, Wyant T, Xu J, et al. Vedolizumab, a monoclonal antibody to the gut homing alpha4beta7 integrin, does not affect cerebrospinal fluid T-lymphocyte immunophenotype. J Neuroimmunol. 2013;264(1–2):123–6.

    Article  PubMed  CAS  Google Scholar 

  352. Rosario M, French JL, Dirks NL, et al. Exposure-Efficacy Relationships for Vedolizumab Induction Therapy in Patients with Ulcerative Colitis or Crohn’s Disease. J Crohns Colitis. 2018 [Epub ahead of print].

  353. Dreesen E, Gils A. Blocking the 47 integrin through vedolizumab: Necessary but not sufficient? J Crohns Colitis. 2017;11(8):903–4.

  354. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N Engl J Med. 2016;375(20):1946–60.

    Article  PubMed  CAS  Google Scholar 

  355. Lamb YN, Duggan ST. Ustekinumab: a review in moderate to severe Crohn’s disease. Drugs. 2017;77(10):1105–14.

    Article  PubMed  CAS  Google Scholar 

  356. Simon EG, Samuel S, Ghosh S, et al. Ustekinumab: a novel therapeutic option in Crohn’s disease. Expert Opin Biol Ther. 2016;16(8):1065–74.

    Article  PubMed  CAS  Google Scholar 

  357. Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997;112(4):1169–78.

    Article  PubMed  CAS  Google Scholar 

  358. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Deepak P, Loftus EV Jr. Ustekinumab in treatment of Crohn’s disease: design, development, and potential place in therapy. Drug Des Devel Ther. 2016;10:3685–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Sandborn WJ, Gasink C, Gao LL, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367(16):1519–28.

    Article  PubMed  CAS  Google Scholar 

  361. Papamichael K, Cheifetz AS. Use of anti-TNF drug levels to optimise patient management. Frontline Gastroenterol. 2016;7(4):289–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  362. Derijks LJ, Hommes DW. Thiopurines in inflammatory bowel disease: new strategies for optimization of pharmacotherapy? Curr Gastroenterol Rep. 2006;8(2):89–92.

    Article  PubMed  Google Scholar 

  363. SmPC Humira (adalimumab). 2018. www.geneesmiddeleninformatiebank.nl. Accessed 5 Feb 2018.

  364. Harzallah I, Rigaill J, Williet N, et al. Golimumab pharmacokinetics in ulcerative colitis: a literature review. Therap Adv Gastroenterol. 2017;10(1):89–100.

    Article  PubMed  CAS  Google Scholar 

  365. SmPC Cimzia (certolizumab pegol). 2018. www.geneesmiddeleninformatiebank.nl. Accessed 5 Feb 2018.

  366. SmPC Remicade (infliximab). 2018. www.geneesmiddeleninformatiebank.nl. Accessed 5 Feb 2018.

  367. SmPC Simponi (golimumab). 2018. www.geneesmiddeleninformatiebank.nl. Accessed 5 Feb 2018.

  368. Wade JR, Parker G, Kosutic G, et al. Population pharmacokinetic analysis of certolizumab pegol in patients with Crohn’s disease. J Clin Pharmacol. 2015;55(8):866–74.

    Article  PubMed  CAS  Google Scholar 

  369. Fasanmade AA, Adedokun OJ, Blank M, et al. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33(7):946–64.

    Article  PubMed  CAS  Google Scholar 

  370. Fasanmade AA, Adedokun OJ, Ford J, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Adedokun OJ, Sandborn WJ, Feagan BG, et al. Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology. 2014;147(6):1296-1307.e5.

    Article  PubMed  CAS  Google Scholar 

  372. Cornillie F, Hanauer SB, Diamond RH, et al. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: a retrospective analysis of the ACCENT I trial. Gut. 2014;63(11):1721–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  373. Reinisch W, Colombel JF, Sandborn WJ, et al. Factors associated with short- and long-term outcomes of therapy for Crohn’s disease. Clin Gastroenterol Hepatol. 2015;13(3):539-547.e2.

    Article  PubMed  Google Scholar 

  374. Warman A, Straathof JW, Derijks LJ. Therapeutic drug monitoring of infliximab in inflammatory bowel disease patients in a teaching hospital setting: results of a prospective cohort study. Eur J Gastroenterol Hepatol. 2015;27(3):242–8.

    Article  PubMed  CAS  Google Scholar 

  375. Roblin X, Boschetti G, Duru G, et al. Distinct Thresholds of Infliximab Trough Level Are Associated with Different Therapeutic Outcomes in Patients with Inflammatory Bowel Disease: A Prospective Observational Study. Inflamm Bowel Dis. 2017;23(11):2048–53.

    Article  PubMed  Google Scholar 

  376. Baert F, Kondragunta V, Lockton S, et al. Antibodies to adalimumab are associated with future inflammation in Crohn’s patients receiving maintenance adalimumab therapy: a post hoc analysis of the Karmiris trial. Gut. 2016;65(7):1126–31.

    Article  PubMed  CAS  Google Scholar 

  377. Baert F, Vande Casteele N, Tops S, et al. Prior response to infliximab and early serum drug concentrations predict effects of adalimumab in ulcerative colitis. Aliment Pharmacol Ther. 2014;40(11–12):1324–32.

    Article  PubMed  CAS  Google Scholar 

  378. Roblin X, Marotte H, Rinaudo M, et al. Association between pharmacokinetics of adalimumab and mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2014;12(1):80-84.e2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc J. J. Derijks.

Ethics declarations

Funding

No funding was received for preparation of this manuscript.

Conflict of interest

Luc Derijks and Dennis Wong have no conflicts of interest to declare. Daniel Hommes received research support, consultancy fees, and educational support from Ferring, Otsuka, Leo Pharma, Novimmune, Roche, Centocor, Schering Plough, Johnson & Johnson, PDL BioPharma, ELAN, Proctor-Gamble, Chemocentryx, AbbVie, UCB, Cellerix, AstraZeneca, Giuliani Pharma, Genentech, BMS, Philips, MSD, Serono, Falk, Genova, Takeda and Gilead. Adriaan van Bodegraven received speaker’s fees, and travel and educational support from AbbVie, Ferring, Janssen, Pfizer, MSD, Takeda, and TEVA. A Consultancy fees were provided by MSD, Pfizer, TEVA and Tramedico, and research grants were provided by ZonMW.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derijks, L.J.J., Wong, D.R., Hommes, D.W. et al. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Inflammatory Bowel Disease. Clin Pharmacokinet 57, 1075–1106 (2018). https://doi.org/10.1007/s40262-018-0639-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0639-4

Navigation