Skip to main content
Log in

The Clinical Pharmacology of Elotuzumab

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Novel treatment options are needed to improve long-term outcomes for patients with multiple myeloma (MM). In this article, we comprehensively review the clinical pharmacology of elotuzumab, a first-in-class monoclonal anti-SLAMF7 antibody approved in combination with lenalidomide and dexamethasone (ELd) for the treatment of patients with MM and one to three prior therapies. Elotuzumab has a dual mechanism of action to specifically kill myeloma cells: binding SLAMF7 on myeloma cells facilitates natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), and direct engagement of SLAMF7 on NK cells further enhances NK cell activity. Elotuzumab administration causes transient elevations of selected cytokines (tumor necrosis factor-α, interferon-γ-induced protein-10 and monocyte chemoattractant protein-1). The temporary nature of these elevations (greatest after the first dose, with a trend to return to baseline by day 7) suggests a low likelihood of facilitating clinically meaningful drug–drug interactions. Elotuzumab exposure increases more than proportionally to dose and >80% SLAMF7 receptor occupancy is achieved with the approved elotuzumab 10 mg/kg regimen. Population pharmacokinetic data from 375 patients demonstrated weight-based dosing is appropriate for elotuzumab, and that ethnicity and hepatic/renal function have minimal effects on exposure. Exposure–response analysis of patients treated with ELd demonstrated that increased elotuzumab exposure does not elevate the risk of grade 3+ adverse events (AEs) or AEs leading to discontinuation/death. Elotuzumab antidrug antibodies occurred in 18.5% of patients treated with ELd or elotuzumab plus bortezomib and dexamethasone, but were generally transient and did not affect elotuzumab efficacy or safety. A monotherapy study indicated elotuzumab does not have clinically relevant effects on QT intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.

    Article  CAS  PubMed  Google Scholar 

  2. Laubach JP, Voorhees PM, Hassoun H, et al. Current strategies for treatment of relapsed/refractory multiple myeloma. Expert Rev Hematol. 2014;7(1):97–111.

    Article  CAS  PubMed  Google Scholar 

  3. Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cruz-Munoz ME, Dong Z, Shi X, et al. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  6. Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.

    Article  CAS  PubMed  Google Scholar 

  8. Dimopoulos MA, Lonial S, White D, et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br J Haematol. 2017. doi:10.1111/bjh.14787.

  9. Bristol-Myers Squibb. Empliciti (elotuzumab) prescribing information. 2015. http://packageinserts.bms.com/pi/pi_empliciti.pdf. Accessed 5 May 2016.

  10. European Medicines Agency. Elotuzumab: Summary of product characteristics. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003967/WC500206673.pdf. Accessed 26 May 2016.

  11. Bristol-Myers Squibb K.K. Notice of marketing approval. 2017. https://www.bms.co.jp/press/20160928.html. Accessed 4 Jan 2017.

  12. Zonder JA, Mohrbacher AF, Singhal S, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9.

    Article  CAS  PubMed  Google Scholar 

  15. ClinicalTrials.gov. Japanese study of (BMS-901608) (elotuzumab) in combination with lenalidomide and low dose dexamethasone. 2015. https://clinicaltrials.gov/ct2/show/NCT01241292. Accessed 4 Mar 2016.

  16. Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and safety of elotuzumab in combination with lenalidomide and dexamethasone in patients with multiple myeloma and various levels of renal impairment: results of a phase 1b study. Clin Lymphoma Myeloma Leuk. 2016;16(3):129–38.

    Article  PubMed  Google Scholar 

  17. Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study of elotuzumab plus bortezomib/dexamethasone (Bd) versus Bd for relapsed/refractory multiple myeloma. Blood. 2016;127(23):2833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. ClinicalTrials.gov. Biomarker study of elotuzumab in high risk smoldering myeloma. 2015. https://clinicaltrials.gov/ct2/show/NCT01441973. Accessed 25 Apr 2016.

  19. Postelnek J, Sheridan J, Keller S, et al. Effects of elotuzumab on soluble SLAMF7 levels in multiple myeloma. Blood. 2015;126(23):2964.

    Google Scholar 

  20. Bouchon A, Cella M, Grierson HL, et al. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21.

    Article  CAS  PubMed  Google Scholar 

  21. Jenkins M, Canfield R, Robbins M, et al. Targeting mechanisms for natural killer cell dysfunction in patients with multiple myeloma. Blood. 2015;126(23):4237.

    Google Scholar 

  22. Deshmane SL, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dufour JH, Dziejman M, Liu MT, et al. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol. 2002;168(7):3195–204.

    Article  CAS  PubMed  Google Scholar 

  24. Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-alpha pathways. Cancer Immunol Immunother. 2015;64(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  25. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  26. Keizer RJ, Huitema AD, Schellens JH, et al. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  28. Richardson PG, Jagannath S, Moreau P, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. Lancet Haematol. 2015;2(12):e516–27.

    Article  PubMed  Google Scholar 

  29. Gibiansky L, Passey C, Roy A, et al. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(3):243–57.

    Article  CAS  PubMed  Google Scholar 

  30. Passey C, Gibiansky L, Mora J, et al. Effect of dexamethasone co-administration on the pharmacokinetics and immunogenicity of elotuzumab. Clin Pharmacol Ther. 2016;99(Suppl 1):S86.

    Google Scholar 

  31. Fasanmade AA, Adedokun OJ, Ford J, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Passey C, Gibiansky L, Sheng J, et al. Exposure response analysis of safety of elotuzumab in patients with multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(Suppl 1):11 (T-81).

    Google Scholar 

  33. Wang Y, Booth B, Rahman A, et al. Toward greater insights on pharmacokinetics and exposure-response relationships for therapeutic biologics in oncology drug development. Clin Pharmacol Ther. 2017;101(5):582–4.

    Article  CAS  PubMed  Google Scholar 

  34. Kenny JR, Liu MM, Chow AT, et al. Therapeutic protein drug–drug interactions: navigating the knowledge gaps-highlights from the 2012 AAPS NBC Roundtable and IQ Consortium/FDA workshop. AAPS J. 2013;15(4):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JI, Zhang L, Men AY, et al. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  37. Kuus-Reichel K, Grauer LS, Karavodin LM, et al. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994;1(4):365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolbink GJ, Aarden LA, Dijkmans BA. Dealing with immunogenicity of biologicals: assessment and clinical relevance. Curr Opin Rheumatol. 2009;21(3):211–5.

    Article  PubMed  Google Scholar 

  39. Yanai H, Hanauer SB. Assessing response and loss of response to biological therapies in IBD. Am J Gastroenterol. 2011;106(4):685–98.

    Article  CAS  PubMed  Google Scholar 

  40. Passey C, Mora J, Dodge R, et al. An integrated assessment of the effects of immunogenicity on the pharmacokinetics, safety, and efficacy of elotuzumab. AAPS J. 2017;19(2):557–67.

    Article  CAS  PubMed  Google Scholar 

  41. Food and Drug Administration. Guidance for Industry. E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. 2005. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073153.pdf. Accessed 2 June 2016.

  42. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez I, Erdman A, Padhi D, et al. Electrocardiographic assessment for therapeutic proteins: scientific discussion. Am Heart J. 2010;160(4):627–34.

    Article  PubMed  Google Scholar 

  44. Passey C, Darbenzio R, Jou Y-M, et al. Effects of elotuzumab on QT interval and cardiac safety in patients with multiple myeloma. Cancer Chemother Pharmacol. 2016;78(6):1237–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PK and immunogenicity analyses were performed at Covance (formerly Tandem Labs) with oversight by Debbie Hilliard and Tonya Felix, including a significant contribution from Linda Zislin and Pathanjali Kadiyala. NAb assessments were performed at Bristol-Myers Squibb by Marina Juhel and Mike Sank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Gupta.

Ethics declarations

Funding

Elotuzumab was developed in a partnership between Bristol-Myers Squibb and AbbVie Biotherapeutics, who funded the studies described in this review. Medical writing assistance was provided by Matthew Thomas, PhD, Caudex, Oxford, UK, and funded by Bristol-Myers Squibb.

Conflict of interest

Chaitali Passey, Jennifer Sheng, Johanna Mora, Amol Tendolkar, Michael Robbins, Robert Dodge, Amit Roy, Akintunde Bello, and Manish Gupta are employees of Bristol-Myers Squibb (Princeton, NJ, USA). Manish Gupta and Chaitali Passey own stocks in Bristol-Myers Squibb; Johanna Mora, Michael Robbins and Amol Tendolkar hold stock options and/or bond holdings in Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passey, C., Sheng, J., Mora, J. et al. The Clinical Pharmacology of Elotuzumab. Clin Pharmacokinet 57, 297–313 (2018). https://doi.org/10.1007/s40262-017-0585-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0585-6

Navigation