Advertisement

Clinical Pharmacokinetics

, Volume 57, Issue 5, pp 625–636 | Cite as

Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation

  • Kana Mizuno
  • Min Dong
  • Tsuyoshi Fukuda
  • Sharat Chandra
  • Parinda A. Mehta
  • Scott McConnell
  • Elias J. Anaissie
  • Alexander A. Vinks
Original Research Article

Abstract

Background

High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity.

Objective

The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy.

Methods

A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients.

Results

A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08–0.19), 0.61 (0.33–0.90), 2.0 (1.3–2.7), and 4.0 (3.6–4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2 = 0.98; p < 0.01) with a mean bias of −2.2% and precision of 9.4%. A similar relationship was observed in children (R 2 = 0.99; p < 0.01).

Conclusions

The developed pharmacokinetic model-based sparse sampling strategy promises to achieve the target area under the curve as part of precision dosing.

Notes

Compliance with Ethical Standards

Funding

This work was supported by the University of Arkansas for Medical Sciences (EJA) and the University of Arkansas for Medical Sciences Medical Research Endowment (SM). In addition, this work was supported in part by funding from a National Institutes of Health grant [5T32HD069054] (MD).

Conflict of interest

Kana Mizuno, Min Dong, Tsuyoshi Fukuda, Sharat Chandra, Parinda A. Mehta, Scott McConnell, Elias J. Anaissie, and Alexander A. Vinks have no conflicts of interest directly relevant to the content of this study.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Supplementary material

40262_2017_581_MOESM1_ESM.pdf (467 kb)
Supplementary material 1 (PDF 466 kb)

References

  1. 1.
    Marsh RA, Vaughn G, Kim MO, Li DD, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116(26):5824–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M, et al. Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood. 2006;107(7):2633–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Marsh R, Fukuda T, Emoto C, Neumeier L, Khandelwal P, Chandra S, et al. Pre-transplant absolute lymphocyte counts impact the pharmacokinetics of alemtuzumab. Biol Blood Marrow Tranplant. 2017;23(4):635–41.CrossRefGoogle Scholar
  4. 4.
    Shaw PJ, Nath CE, Lazarus HM. Not too little, not too much-just right! (Better ways to give high dose melphalan). Bone Marrow Transplant. 2014;49(12):1457–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Grazziutti ML, Dong L, Miceli MH, Krishna SG, Kiwan E, Syed N, et al. Oral mucositis in myeloma patients undergoing melphalan-based autologous stem cell transplantation: incidence, risk factors and a severity predictive model. Bone Marrow Transplant. 2006;38(7):501–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Blijlevens N, Schwenkglenks M, Bacon P, D’Addio A, Einsele H, Maertens J, et al. Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy: European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol. 2008;26(9):1519–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Peterman A, Cella D, Glandon G, Dobrez D, Yount S. Mucositis in head and neck cancer: economic and quality-of-life outcomes. J Natl Cancer Instit Monogr. 2001;29:45–51.CrossRefGoogle Scholar
  9. 9.
    Sonis ST, Oster G, Fuchs H, Bellm L, Bradford WZ, Edelsberg J, et al. Oral mucositis and the clinical and economic outcomes of hematopoietic stem-cell transplantation. J Clin Oncol. 2001;19(8):2201–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Shaw PJ, Nath CE, Nivison-Smith I, Joshua DE, Kerridge IH, Presgrave P, et al. Higher melphalan exposure is associated with improved overall survival for myeloma patients undergoing autologous transplant. Biol Blood Marrow Transplant. 2012;18(2):S207.CrossRefGoogle Scholar
  11. 11.
    Ploin DY, Tranchand B, Guastalla JP, Rebattu P, Chauvin F, Clavel M, et al. Pharmacokinetically guided dosing for intravenous melphalan: a pilot study in patients with advanced ovarian adenocarcinoma. Eur J Cancer. 1992;28A(8–9):1311–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Kuhne A, Sezer O, Heider U, Meineke I, Muhlke S, Niere W, et al. Population pharmacokinetics of melphalan and glutathione S-transferase polymorphisms in relation to side effects. Clin Pharmacol Ther. 2008;83(5):749–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Nath CE, Shaw PJ, Trotman J, Zeng LH, Duffull SB, Hegarty G, et al. Population pharmacokinetics of melphalan in patients with multiple myeloma undergoing high dose therapy. Br J Clin Pharmacol. 2010;69(5):484–97.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nath CE, Trotman J, Tiley C, Presgrave P, Joshua D, Kerridge I, et al. High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br J Clin Pharmacol. 2016;82(1):149–59.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jelliffe RW, Schumitzky A, Van Guilder M, Liu M, Hu L, Maire P, et al. Individualizing drug dosage regimens: roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Ther Drug Monit. 1993;15(5):380–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Mould DR, D’Haens G, Upton RN. Clinical decision support tools: the evolution of a revolution. Clin Pharmacol Ther. 2016;99(4):405–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Tesfaye H, Branova R, Klapkova E, Prusa R, Janeckova D, Riha P, et al. The importance of therapeutic drug monitoring (TDM) for parenteral busulfan dosing in conditioning regimen for hematopoietic stem cell transplantation (HSCT) in children. Ann Transplant. 2014;19:214–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Philippe M, Neely M, Bertrand Y, Bleyzac N, Goutelle S. A nonparametric method to optimize initial drug dosing and attainment of a target exposure interval: concepts and application to busulfan in pediatrics. Clin Pharmacokinet. 2017;56(4):435–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Neely M, Philippe M, Rushing T, Fu X, van Guilder M, Bayard D, et al. Accurately achieving target busulfan exposure in children and adolescents with very limited sampling and the BestDose software. Ther Drug Monit. 2016;38(3):332–42.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bartelink IH, Lalmohamed A, van Reij EM, Dvorak CC, Savic RM, Zwaveling J, et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol. 2016;3(11):e526–36.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Abdel-Rahman SM, Breitkreutz ML, Bi C, Matzuka BJ, Dalal J, Casey KL, et al. Design and testing of an EHR-integrated, busulfan pharmacokinetic decision support tool for the point-of-care clinician. Front Pharmacol. 2016;7:65.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NH. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20(3):754–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Tranchand B, Ploin YD, Minuit MP, Sapet C, Biron P, Philip T, et al. High-dose melphalan dosage adjustment: possibility of using a test-dose. Cancer Chemother Pharmacol. 1989;23(2):95–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Nath CE, Zeng L, Eslick A, Trotman J, Earl JW. An isocratic UV HPLC assay for analysis of total and free melphalan concentrations in human plasma. Acta Chromatogr. 2008;20(3):383–98.CrossRefGoogle Scholar
  26. 26.
    Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009.Google Scholar
  27. 27.
    Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometr Syst Pharmacol. 2013;2:e50.CrossRefGoogle Scholar
  28. 28.
    Choi L, Caffo BS, Kohli U, Pandharipande P, Kurnik D, Ely EW, et al. A Bayesian hierarchical nonlinear mixture model in the presence of artifactual outliers in a population pharmacokinetic study. J Pharmacokinet Pharmacodyn. 2011;38(5):613–36.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nath CE, Shaw PJ, Montgomery K, Earl JW. Population pharmacokinetics of melphalan in paediatric blood or marrow transplant recipients. Br J Clin Pharmacol. 2007;64(2):151–64.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cho YK, Sborov DW, Lamprecht M, Li J, Wang J, Hade EM, et al. Associations of high-dose melphalan pharmacokinetics and outcomes in the setting of a randomized cryotherapy trial. Clin Pharmacol Ther. 2017;. doi: 10.1002/cpt.644 (Epub ahead of print).Google Scholar
  31. 31.
    Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Ann Rev Pharmacol Toxicol. 2008;48:303–32.CrossRefGoogle Scholar
  32. 32.
    Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71(5):334–48.CrossRefPubMedGoogle Scholar
  33. 33.
    Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Y, Jadhav PR, Lala M, Gobburu JV. Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol. 2012;52(10):1601–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Mouksassi M, Marier J, Cyran J, Vinks A. Clinical trial simulations in pediatric patients using realistic covariates: application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome. Clin Pharmacol Ther. 2009;86(6):667–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Foracchia M, Hooker A, Vicini P, Ruggeri A. POPED, a software for optimal experiment design in population kinetics. Comput Methods Programs Biomed. 2004;74(1):29–46.CrossRefPubMedGoogle Scholar
  37. 37.
    Ogungbenro K, Aarons L. An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments. J Biopharm Stat. 2009;19(1):174–89.CrossRefPubMedGoogle Scholar
  38. 38.
    D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.Google Scholar
  39. 39.
    D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Proost JH, Meijer DK. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med. 1992;22(3):155–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Ardiet C, Tranchand B, Biron P, Rebattu P, Philip T. Pharmacokinetics of high-dose intravenous melphalan in children and adults with forced diuresis: report in 26 cases. Cancer Chemother Pharmacol. 1986;16(3):300–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wojciechowski J, Hopkins AM, Upton RN. Interactive pharmacometric applications using R and the Shiny Package. CPT Pharmacometr Syst Pharmacol. 2015;4(3):e00021.CrossRefGoogle Scholar
  46. 46.
    Mougenot P, Pinguet F, Fabbro M, Culine S, Poujol S, Astre C, et al. Population pharmacokinetics of melphalan, infused over a 24-hour period, in patients with advanced malignancies. Cancer Chemother Pharmacol. 2004;53(6):503–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Reece PA, Hill HS, Green RM, Morris RG, Dale BM, Kotasek D, et al. Renal clearance and protein binding of melphalan in patients with cancer. Cancer Chemother Pharmacol. 1988;22(4):348–52.CrossRefPubMedGoogle Scholar
  48. 48.
    Cornwell GG 3rd, Pajak TF, McIntyre OR, Kochwa S, Dosik H. Influence of renal failure on myelosuppressive effects of melphalan: cancer and leukemia group B experience. Cancer Treat Rep. 1982;66(3):475–81.PubMedGoogle Scholar
  49. 49.
    Bolton MG, Colvin OM, Hilton J. Specificity of isozymes of murine hepatic glutathione S-transferase for the conjugation of glutathione with l-phenylalanine mustard. Cancer Res. 1991;51(9):2410–5.PubMedGoogle Scholar
  50. 50.
    Dirven HA, van Ommen B, van Bladeren PJ. Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem Res Toxicol. 1996;9(2):351–60.CrossRefPubMedGoogle Scholar
  51. 51.
    Bredschneider M, Klein K, Murdter TE, Marx C, Eichelbaum M, Nussler AK, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther. 2002;71(6):479–87.CrossRefPubMedGoogle Scholar
  52. 52.
    Kim SD, Lee JH, Hur EH, Lee JH, Kim DY, Lim SN, et al. Influence of GST gene polymorphisms on the clearance of intravenous busulfan in adult patients undergoing hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(8):1222–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Elhasid R, Krivoy N, Rowe JM, Sprecher E, Adler L, Elkin H, et al. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(6):1172–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Ansari M, Lauzon-Joset JF, Vachon MF, Duval M, Theoret Y, Champagne MA, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Srivastava A, Poonkuzhali B, Shaji RV, George B, Mathews V, Chandy M, et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004;104(5):1574–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMedGoogle Scholar
  57. 57.
    Krishna SG, Zhao W, Grazziutti ML, Sanathkumar N, Barlogie B, Anaissie EJ. Incidence and risk factors for lower alimentary tract mucositis after 1529 courses of chemotherapy in a homogenous population of oncology patients: clinical and research implications. Cancer. 2011;117(3):648–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Aljitawi OS, Ganguly S, Abhyankar SH, Ferree M, Marks R, Pipkin JD, et al. Phase IIa cross-over study of propylene glycol-free melphalan (LGD-353) and alkeran in multiple myeloma autologous transplantation. Bone Marrow Transplant. 2014;49(8):1042–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kana Mizuno
    • 1
  • Min Dong
    • 1
    • 5
  • Tsuyoshi Fukuda
    • 1
    • 5
  • Sharat Chandra
    • 2
    • 5
  • Parinda A. Mehta
    • 2
    • 5
  • Scott McConnell
    • 3
  • Elias J. Anaissie
    • 4
  • Alexander A. Vinks
    • 1
    • 5
  1. 1.Division of Clinical PharmacologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Bone Marrow Transplantation and Immune DeficiencyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.AlkermesWalthamUSA
  4. 4.University of Cincinnati Cancer Institute, College of MedicineUniversity of CincinnatiCincinnatiUSA
  5. 5.Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations