Skip to main content
Log in

Prediction of the Effect of Renal Impairment on the Pharmacokinetics of New Drugs

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Introduction

Renal impairment may have a significant impact on the pharmacokinetics of drugs. Ad hoc studies in subjects with renal impairment are required by the regulatory authorities to propose dose adjustments in these subjects, to find a dosing regimen able to provide a systemic exposure similar to those in subjects with a normal renal function given the relevant clinical dose.

Methods

To evaluate the main descriptors and establish a predictive model of the effect of renal impairment on the exposure of new drugs, we considered 73 marketed drugs, for which studies in subjects with different degrees of renal impairment were available in the literature. Multivariate analysis was performed using the main pharmacokinetic parameters. Other approaches, including data mining and machine learning techniques, were tested to propose models based on a categorical definition of the exposure changes.

Results

Stepwise multivariate regression analyses revealed, as expected, that the fraction of dose excreted unchanged in urine and plasma protein binding were the factors primarily related to the change in exposure between subjects with normal and impaired renal function. Data mining techniques provided similar results.

Discussion

The pharmacokinetic predictions were however not always satisfactory, especially for drugs which, despite the negligible renal excretion, are characterized by significant increases in the systemic exposure in subjects with renal impairment. This phenomenon, interpreted considering the accumulation of endogenous metabolism inhibitors in subjects with moderate and severe renal disease (uremic toxins), cannot be fully captured and described, likely owing to an incomplete understanding of the pathophysiological phenomena and to some limitations of the available database of clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rowland Yeo K, Aarabi M, Jamei M, et al. Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol. 2011;4(2):261–74.

    Article  PubMed  Google Scholar 

  2. Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol. 2014;10(8):1131–43.

    Article  CAS  PubMed  Google Scholar 

  3. Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65:757–73.

    Article  CAS  PubMed  Google Scholar 

  4. Poggesi I, Benedetti MS, Whomsley R, et al. Pharmacokinetics in special populations. Drug Metab Rev. 2009;41(3):422–54.

    Article  CAS  PubMed  Google Scholar 

  5. Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: improving global outcomes (KDIGO). Kidney Int. 2005;67:2089–100.

    Article  PubMed  Google Scholar 

  6. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  7. Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 2008;74(7):860–6.

    Article  CAS  PubMed  Google Scholar 

  8. Eknoyan G, Levin A, Levin NW. Bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:1–201.

    Article  Google Scholar 

  9. Kliger AS, Foley RN, Goldfarb DS, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for anemia in CKD. Am J Kidney Dis. 2013;62(5):849–59.

    Article  PubMed  Google Scholar 

  10. US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Pharmacokinetics in patients with impaired renal function: study design, data analysis, and impact on dosing and labeling. Draft FDA guidance. 2010. http://www.fda.gov/downloads/Drugs/Guidances/UCM204959.pdf. Accessed 20 Mar 2017.

  11. US National Library of Medicine. DailyMed. Bethesda (MD): U.S. National Library of Medicine, National Institutes of Health, Health and Human Services; 2005. http://purl.access.gpo.gov/GPO/LPS81632. Accessed 20 Mar 2017.

  12. Dowell JA, Stogniew M, Krause D, et al. Anidulafungin does not require dosage adjustment in subjects with varying degrees of hepatic or renal impairment. J Clin Pharmacol. 2007;47(4):461–70.

    Article  CAS  PubMed  Google Scholar 

  13. Mallikaarjun S, Shoaf SE, Boulton DW, et al. Effects of hepatic or renal impairment on the pharmacokinetics of aripiprazole. Clin Pharmacokinet. 2008;47(8):533–42.

    Article  CAS  PubMed  Google Scholar 

  14. Drusano GL, Weir M, Forrest A, et al. Pharmacokinetics of intravenously administered ciprofloxacin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1987;31(6):860–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roy MJ, Erdman KA, Abeyratne AT, et al. Pharmacokinetics of intravenous conivaptan in subjects with hepatic or renal impairment. Clin Pharmacokinet. 2013;52(5):385–95.

    Article  CAS  PubMed  Google Scholar 

  16. Boike SC, Pue MA, Freed MI, et al. Pharmacokinetics of famciclovir in subjects with varying degrees of renal impairment. Clin Pharmacol Ther. 1994;55(4):418–26.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson MA, Verpooten GA, Daniel MJ, et al. Single dose pharmacokinetics of lamivudine in subjects with impaired renal function and the effect of haemodialysis. Br J Clin Pharmacol. 1998;46(1):21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wootton R, Soul-Lawton J, Rolan PE, et al. Comparison of the pharmacokinetics of lamotrigine in patients with chronic renal failure and healthy volunteers. Br J Clin Pharmacol. 1997;43(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  19. Delhotal-Landes B, Flouvat B, Duchier J, et al. Pharmacokinetics of lansoprazole in patients with renal or liver disease of varying severity. Eur J Clin Pharmacol. 1993;45(4):367–71.

    Article  CAS  PubMed  Google Scholar 

  20. Christensson BA, Nilsson-Ehle I, Hutchison M, et al. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snoeck E, van Peer A, Mannens G, et al. Influence of age, renal and liver impairment on the pharmacokinetics of risperidone in man. Psychopharmacology. 1995;122(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kubitza D, Becka M, Mueck W, et al. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2010;70(5):703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boulton D, Li L, Frevert EU, et al. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin Pharmacokinet. 2011;50(4):253–65.

    Article  CAS  PubMed  Google Scholar 

  24. Germani M, Crivori P, Rocchetti M, et al. Evaluation of a basic physiologically based pharmacokinetic model for simulating the first-time-in-animal study. Eur J Pharm Sci. 2007;31(3–4):190–201.

    Article  CAS  PubMed  Google Scholar 

  25. Bastien P, Tenenhaus M. PLS regression and multiple imputations. In: Vilares M, et al. (eds), Proceedings of the PLS’03 international symposium. Paris: CISIA; 2003: pp. 497–8. http://pdfs.semanticscholar.org/a547/464f9e10a6101a5e75ba5504fe9e2cc905b0.pdf. Accessed 22 Jun 2017.

  26. Abdi H. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat. 2010;2(1):97–106.

    Article  Google Scholar 

  27. Preda C, Saporta G, Hedi M, et al. The NIPALS algorithm for missing functional data. Rom J Pure Appl Math. 2010;55(4):315–26. http://cedric.cnam.fr/fichiers/art_2223.pdf. Accessed 20 Mar 2017.

  28. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. http://www.R-project.org/. Accessed 20 Mar 2017.

  29. Fung G. A comprehensive overview of basic clustering algorithms. 2001. http://pdfs.semanticscholar.org/b7cd/0a4e0a129b55b76b7a0faf8ec73a5ebd1645.pdf. Accessed 20 Mar 2017.

  30. Demsar J, Curk T, Erjavec A, et al. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–53.

    Google Scholar 

  31. Chen N, Lau H, Kong L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol. 2007;47(12):1466–75.

    Article  CAS  PubMed  Google Scholar 

  32. Stangier J, Rathgen K, Stähle H, et al. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate. Clin Pharmacokinet. 2010;49(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  33. Poole C, Gardiner J, Twelves C, et al. Effect of renal impairment on the pharmacokinetics and tolerability of capecitabine (Xeloda) in cancer patients. Cancer Chemother Pharmacol. 2002;49(3):225–34.

    Article  PubMed  Google Scholar 

  34. Jannuzzo MG, Poggesi I, Spinelli R, et al. The effects of degree of hepatic or renal impairment on the pharmacokinetics of exemestane in postmenopausal women. Cancer Chemoth Pharm. 2004;53(6):475–81.

    Article  CAS  Google Scholar 

  35. Yoshida K, Sun B, Zhang L, et al. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5. Clin Pharmacol Ther. 2016;100(1):75–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joy MS, Frye RF, Nolin TD, et al. In vivo alterations in drug metabolism and transport pathways in patients with chronic kidney diseases. Pharmacotherapy. 2014;34:114–22.

    Article  CAS  PubMed  Google Scholar 

  37. Thomson BK, Nolin TD, Velenosi TJ, et al. Effect of CKD and dialysis modality on exposure to drugs cleared by nonrenal mechanisms. Am J Kidney Dis. 2015;65(4):574–82.

    Article  CAS  PubMed  Google Scholar 

  38. Yeung CK, Yoshida K, Kusama M, et al. Organ impairment-drug-drug interaction database: a tool for evaluating the impact of renal or hepatic impairment and pharmacologic inhibition on the systemic exposure of drugs. CPT Pharmacomet Syst Pharmacol. 2015;4:489–94.

    Article  CAS  Google Scholar 

  39. Hsu V, de L T Vieira M, Zhao P, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet. 2014;53(3):283–93.

    Article  CAS  PubMed  Google Scholar 

  40. Lu C, Suri A, Shyu WC, et al. Assessment of cytochrome P450-mediated drug–drug interaction potential of orteronel and exposure changes in patients with renal impairment using physiologically based pharmacokinetic modeling and simulation. Biopharm Drug Dispos. 2014;35(9):543–52.

    Article  CAS  PubMed  Google Scholar 

  41. Grillo JA, Zhao P, Bullock J, et al. Utility of a physiologically-based pharmacokinetic (PBPK) modeling approach to quantitatively predict a complex drug-drug-disease interaction scenario for rivaroxaban during the drug review process: implications for clinical practice. Biopharm Drug Dispos. 2012;33(2):99–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Magni.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of Interest

Elisa Borella and Paolo Magni have no conflicts of interest directly relevant to the content of this article. Italo Poggesi is an employee at Janssen R&D.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Supplementary material 2 (PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borella, E., Poggesi, I. & Magni, P. Prediction of the Effect of Renal Impairment on the Pharmacokinetics of New Drugs. Clin Pharmacokinet 57, 505–514 (2018). https://doi.org/10.1007/s40262-017-0574-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0574-9

Navigation