Skip to main content
Log in

Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues.

Objectives

The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues.

Methods

A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility.

Results

The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions.

Conclusion

The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hytten FE, Leitch I. The physiology of human pregnancy. 2nd ed. Oxford: Blackwell Science Ltd; 1971.

    Google Scholar 

  2. Hill CC, Pickinpaugh J. Physiologic changes in pregnancy. Surg Clin North Am. 2008;88(2):391–401.

    Article  PubMed  Google Scholar 

  3. Carlin A, Alfirevic Z. Physiological changes of pregnancy and monitoring. Best Pract Res Clin Obstet Gynaecol. 2008;22(5):801–23.

    Article  PubMed  Google Scholar 

  4. Gaiser R. Physiologic changes of pregnancy. Chestnuts Obstet Anesth Princ pract. 2009;4:15–36.

    Article  Google Scholar 

  5. Pacheco LD, Costantine MM, Hankins GD. Physiologic changes during pregnancy. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st edn. USA: Academic Press, Elsevier Inc.; 2013. p. 5–16. ISBN:9780123860071. doi:10.1016/B978-0-12-386007-1.00002-7.

  6. Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st edn. USA: Academic Press, Elsevier Inc.; 2013. p. 17–39. ISBN:9780123860071. doi:10.1016/B978-0-12-386007-1.00003-9.

  7. Costantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5(65):1–5. doi:10.3389/fphar.2014.00065.

    CAS  Google Scholar 

  8. Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  9. Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.

    Article  PubMed  Google Scholar 

  10. Eyal S, Easterling TR, Carr D, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Best B, Burchett S, Li H, et al. Pharmacokinetics of tenofovir during pregnancy and postpartum. HIV Med. 2015;16(8):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hebert MF, Carr DB, Anderson GD, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  13. Hebert M, Easterling T, Kirby B, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.

    Article  CAS  PubMed  Google Scholar 

  14. Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yerby MS, Friel PN, McCormick K, et al. Pharmacokinetics of anticonvulsants in pregnancy: alterations in plasma protein binding. Epilepsy Res. 1990;5(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mattison D, Zajicek A. Gaps in knowledge in treating pregnant women. Gender Med. 2006;3(3):169–82.

    Article  Google Scholar 

  17. Thomas SH, Yates LM. Prescribing without evidence: pregnancy. Br J Clin Pharmacol. 2012;74(4):691–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72(10):1103–27.

    Article  CAS  PubMed  Google Scholar 

  19. Claassen K, Thelen K, Coboeken K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.

    Article  CAS  PubMed  Google Scholar 

  20. Maharaj A, Barrett J, Edginton A. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlender J-F, Meyer M, Thelen K, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition. Clin Pharmacokinet. 2008;47(11):743–52.

    Article  PubMed  Google Scholar 

  23. Gaohua L, Abduljalil K, Jamei M, et al. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74(5):873–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Luecke RH, Wosilait WD, Pearce BA, Young JF. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology. 1994;49(2):90–103.

    Article  CAS  PubMed  Google Scholar 

  25. Young JF, Branham WS, Sheehan DM, et al. Physiological “constants” for PBPK models for pregnancy. J Toxicol Environ Health. 1997;52(5):385–401.

    CAS  PubMed  Google Scholar 

  26. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.

    Article  Google Scholar 

  27. Abduljalil K, Furness P, Johnson TN, et al. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy. Clin Pharmacokinet. 2012;51(6):365–96.

    Article  CAS  PubMed  Google Scholar 

  28. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Chippenham: John Wiley & Sons, Ltd; 2008.

    Book  Google Scholar 

  29. Rencher AC, Pun FC. Inflation of R2 in best subset regression. Technometrics. 1980;22(1):49–53.

    Article  Google Scholar 

  30. McQuarrie AD, Tsai C-L. Regression and time series model selection. 1st ed. Singapore: World Scientific; 1998.

    Book  Google Scholar 

  31. Spiess A-N, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 2010;10(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.

    Google Scholar 

  33. Anim-Nyame N, Sooranna S, Johnson M, et al. Resting peripheral blood flow in normal pregnancy and in pre-eclampsia. Clin Sci. 2000;99(6):505–10.

    Article  CAS  PubMed  Google Scholar 

  34. Beetham R, Dawnay A, Menabawy M, Silver A. Urinary excretion of albumin and retinol-binding protein during normal pregnancy. J Clin Pathol. 1988;41(10):1089–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campbell DM, MacGillivray I. Comparison of maternal response in first and second pregnancies in relation to baby weight. BJOG. 1972;79(8):684–93.

    Article  CAS  Google Scholar 

  36. Connelly TJ, Ruo TI, Frederiksen MC, Atkinson AJ. Characterization of theophylline binding to serum proteins in pregnant and nonpregnant women. Clin Pharmacol Ther. 1990;47(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  37. Darby WJ, McGanity WJ, Martin MP, et al. The Vanderbilt Cooperative Study of Maternal and Infant Nutrition: IV. Dietary laboratory and physical findings in 2129 delivered pregnancies. J Nutr. 1953;51(4):565–97.

    CAS  PubMed  Google Scholar 

  38. Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clin Pharmacol Ther. 1980;28(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  39. Haram K, Augensen K, Elsayed S. Serum protein pattern in normal pregnancy with special reference to acute-phase reactants. BJOG. 1983;90(2):139–45.

    Article  CAS  Google Scholar 

  40. Hønger P. Intravascular mass of albumin in pre-eclampsia and normal pregnancy. Scand J Clin Lab Invest. 1967;19(3):283–7.

    Article  PubMed  Google Scholar 

  41. Horne C, Howie P, Goudie R. Serum alpha2-macroglobulin, transferrin, albumin, and IgG levels in preeclampsia. J Clin Pathol. 1970;23(6):514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krauer B, Dayer P, Anner R. Changes in serum albumin and α1-acid glycoprotein concentrations during pregnancy: an analysis of fetal-maternal pairs. Br J Obstet Gynaecol. 1984;91(9):875–81.

    Article  CAS  PubMed  Google Scholar 

  43. Larijani GE, Norris MC, Ala-Kokko TI, et al. Serum concentration of alpha 1-acid glycoprotein and albumin following cesarean section and vaginal delivery. DICP. 1990;24(3):328–9.

    Article  CAS  PubMed  Google Scholar 

  44. Laurell C-B. Orosomucoid and α1-antitrypsin in maternal and fetal sera at parturition. Scand J Clin Lab Invest. 1968;21(2):136–8.

    Article  CAS  PubMed  Google Scholar 

  45. Macgillivray I, Tovey JE. A study of the serum protein changes in pregnancy and toxaemia, using paper strip electrophoresis. BJOG. 1957;64(3):361–4.

    Article  CAS  Google Scholar 

  46. MacLennan F, MacDonald A, Campbell D. Lung water during the puerperium. Anaesthesia. 1987;42(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  47. Pabby P. Changes in serum proteins during pregnancy. BJOG. 1960;67(1):43–55.

    Article  Google Scholar 

  48. Pirani B, MacGillivray I. Smoking during pregnancy: its effect on maternal metabolism and fetoplacental function. Obstet Gynecol. 1978;52(3):257–63.

    CAS  PubMed  Google Scholar 

  49. Pitkin RM, Reynolds W, Williams GA, Hargis GK. Calcium metabolism in normal pregnancy: a longitudinal study. Am J Obstet Gynecol. 1979;133(7):781–90.

    Article  CAS  PubMed  Google Scholar 

  50. Spetz S, Brody S. Serum proteins in pregnancy complicated by toxaemia. Acta Obstet Gynecol Scand. 1967;46(2):151–67.

    CAS  PubMed  Google Scholar 

  51. Studd J, Blainey J, Bailey D. A study of serum protein changes in late pregnancy and identification of the pregnancy zone protein using antigen antibody crossed immunoelectrophoresis. BJOG. 1970;77(1):42–51.

    Article  CAS  Google Scholar 

  52. Tsen LC, Tarshis J, Denson DD, et al. Measurements of maternal protein binding of bupivacaine throughout pregnancy. Anesth Analg. 1999;89(4):965–8.

    CAS  PubMed  Google Scholar 

  53. Tuttle S, Aggett PJ, Campbell D, MacGillivray I. Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. Am J Clin Nutr. 1985;41(5):1032–41.

    CAS  PubMed  Google Scholar 

  54. Von Studnitz W. Studies on serum proteins in pregnancy. Scand J Clin Lab Invest. 1955;7(4):324–8.

    Article  Google Scholar 

  55. Whittaker PG, Lind T. The intravascular mass of albumin during human pregnancy: a serial study in normal and diabetic women. Br J Obstet Gynaecol. 1993;100(6):587–92.

    Article  CAS  PubMed  Google Scholar 

  56. Wright A, Steele P, Bennett J, et al. The urinary excretion of albumin in normal pregnancy. Br J Obstet Gynaecol. 1987;94(5):408–12.

    Article  CAS  PubMed  Google Scholar 

  57. Bardos P, Luthier B, Avenet J, et al. Variations des concentrations de certaines glycoproteines au niveau du sang maternel, foetal et du liquide amniotique lors de la grossesse. Clin Chim Acta. 1976;66(3):353–63.

    Article  CAS  PubMed  Google Scholar 

  58. Havenaar EC, Axford JS, Brinkman-van der Linden EC, et al. Severe rheumatoid arthritis prohibits the pregnancy-induced decrease in α3-fucosylation of α1-acid glycoprotein. Glycoconj J. 1998;15(7):723–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kovar I, Riches PG. C3 and C4 complement components and acute phase proteins in late pregnancy and parturition. J Clin Pathol. 1988;41(6):650–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Succari M, Foglietti M-J, Percheron F. Microheterogeneity of α 1-acid glycoprotein: variation during the menstrual cycle in healthy women, and profile in women receiving estrogen-progestogen treatment. Clin Chim Acta. 1990;187(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  61. Wood M, Wood AJ. Changes in plasma drug binding and α1-acid glycoprotein in mother and newborn infant. Clin Pharmacol Ther. 1981;29(4):522–6.

    Article  CAS  PubMed  Google Scholar 

  62. Wulf H, Münstedt P, Maier C. Plasma protein binding of bupivacaine in pregnant women at term. Acta Anaesth Scand. 1991;35(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  63. Oatridge A, Holdcroft A, Saeed N, et al. Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. Am J Neuroradiol. 2002;23(1):19–26.

    PubMed  Google Scholar 

  64. Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.

    Article  PubMed  Google Scholar 

  65. Nevo O, Soustiel JF, Thaler I. Maternal cerebral blood flow during normal pregnancy: a cross-sectional study. Am J Obstet Gynecol. 2010;203(5):475 (e1–6).

    Article  PubMed  Google Scholar 

  66. Paxton A, Lederman SA, Heymsfield SB, et al. Anthropometric equations for studying body fat in pregnant women. Am J Clin Nutr. 1998;67(1):104–10.

    CAS  PubMed  Google Scholar 

  67. Lederman SA. Pregnancy. In: Hemysfield SBL, Timothy G, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign (IL): Human Kinetics; 2005. p. 299–311.

    Google Scholar 

  68. Butte NF, Ellis KJ, Wong WW, et al. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol. 2003;189(5):1423–32.

    Article  PubMed  Google Scholar 

  69. Kopp-Hoolihan L, Van Loan M, Wong W, King J. Fat mass deposition during pregnancy using a four-component model. J Appl Physiol. 1999;87(1):196–202.

    CAS  PubMed  Google Scholar 

  70. Kopp-Hoolihan LE, van Loan MD, Wong WW, King JC. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am J Clin Nutr. 1999;69(4):697–704.

    CAS  PubMed  Google Scholar 

  71. Butte N, Hopkinson J, Nicolson M. Leptin in human reproduction: serum leptin levels in pregnant and lactating women. J Clin Endocrinol Metab. 1997;82(2):585–9.

    Article  CAS  PubMed  Google Scholar 

  72. Catalano PM, Wong WW, Drago NM, Amini SB. Estimating body composition in late gestation: a new hydration constant for body density and total body water. Am J Physiol Endocrinol Metab. 1995;268(1):E153–8.

    CAS  Google Scholar 

  73. de Groot LC, Boekholt HA, Spaaij C, et al. Energy balances of healthy Dutch women before and during pregnancy: limited scope for metabolic adaptations in pregnancy. Am J Clin Nutr. 1994;59(4):827–32.

    PubMed  Google Scholar 

  74. Highman TJ, Friedman JE, Huston LP, et al. Longitudinal changes in maternal serum leptin concentrations, body composition, and resting metabolic rate in pregnancy. Am J Obstet Gynecol. 1998;178(5):1010–5.

    Article  CAS  PubMed  Google Scholar 

  75. Hopkinson JM, Butte NF, Ellis KJ, et al. Body fat estimation in late pregnancy and early postpartum: comparison of two-, three-, and four-component models. Am J Clin Nutr. 1997;65(2):432–8.

    CAS  PubMed  Google Scholar 

  76. Lof M, Forsum E. Hydration of fat-free mass in healthy women with special reference to the effect of pregnancy. Am J Clin Nutr. 2004;80(4):960–5.

    CAS  PubMed  Google Scholar 

  77. Lof M, Olausson H, Bostrom K, et al. Changes in basal metabolic rate during pregnancy in relation to changes in body weight and composition, cardiac output, insulin-like growth factor I, and thyroid hormones and in relation to fetal growth. Am J Clin Nutr. 2005;81(3):678–85.

    CAS  PubMed  Google Scholar 

  78. Van Loan M, Kopp L, King J, et al. Fluid changes during pregnancy: use of bioimpedance spectroscopy. J Appl Physiol. 1995;78(3):1037–42.

    PubMed  Google Scholar 

  79. Lederman SA, Paxton A, Heymsfield SB, et al. Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol. 1997;90(4, Part 1):483–8.

    Article  CAS  PubMed  Google Scholar 

  80. Borghi C, Degli Esposti D, Immordino V, et al. Relationship of systemic hemodynamics, left ventricular structure and function, and plasma natriuretic peptide concentrations during pregnancy complicated by preeclampsia. Am J Obstet Gynecol. 2000;183(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  81. Kametas N, McAuliffe F, Hancock J, et al. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18(5):460–6.

    Article  CAS  PubMed  Google Scholar 

  82. Lucini D, Strappazzon P, Dalla Vecchia L, et al. Cardiac autonomic adjustments to normal human pregnancy: insight from spectral analysis of R–R interval and systolic arterial pressure variability. J Hypertens. 1999;17(12):1899–904.

    Article  CAS  PubMed  Google Scholar 

  83. Mesa A, Jessurun C, Hernandez A, et al. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99(4):511–7.

    Article  CAS  PubMed  Google Scholar 

  84. Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94(4):667–72.

    Article  CAS  PubMed  Google Scholar 

  85. Poppas A, Shroff SG, Korcarz CE, et al. Serial assessment of the cardiovascular system in normal pregnancy role of arterial compliance and pulsatile arterial load. Circulation. 1997;95(10):2407–15.

    Article  CAS  PubMed  Google Scholar 

  86. Robson S, Dunlop W, Moore M, Hunter S. Haemodynamic changes during the puerperium: a Doppler and M-mode echocardiographic study. Br J Obstet Gynaecol. 1987;94(11):1028–39.

    Article  CAS  PubMed  Google Scholar 

  87. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.

    CAS  PubMed  Google Scholar 

  88. Schannwell CM, Zimmermann T, Schneppenheim M, et al. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology. 2002;97(2):73–8.

    Article  PubMed  Google Scholar 

  89. Thompson JA, Hays PM, Sagar KB, Cruikshank DP. Echocardiographic left ventricular mass to differentiate chronic hypertension from preeclampsia during pregnancy. Am J Obstet Gynecol. 1986;155(5):994–9.

    Article  CAS  PubMed  Google Scholar 

  90. Valensise H, Novelli G, Vasapollo B, et al. Maternal cardiac systolic and diastolic function: relationship with uteroplacental resistances. A Doppler and echocardiographic longitudinal study. Ultrasound Obstet Gynecol. 2000;15(6):487–97.

    Article  CAS  PubMed  Google Scholar 

  91. Vasapollo B, Novelli GP, Valensise H. Total vascular resistance and left ventricular morphology as screening tools for complications in pregnancy. Hypertension. 2008;51(4):1020–6.

    Article  CAS  PubMed  Google Scholar 

  92. Vasapollo B, Valensise H, Novelli G, et al. Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet Gynecol. 2002;20(5):452–7.

    Article  CAS  PubMed  Google Scholar 

  93. Lees M, Taylor S, Scott D, Kerr M. A study of cardiac output at rest throughout pregnancy. BJOG. 1967;74(3):319–28.

    Article  CAS  Google Scholar 

  94. Rubler S, Damani PM, Pinto ER. Cardiac size and performance during pregnancy estimated with echocardiography. Am J Cardiol. 1977;40(4):534–40.

    Article  CAS  PubMed  Google Scholar 

  95. Higuchi H, Takagi S, Zhang K, et al. Effect of lateral tilt angle on the volume of the abdominal aorta and inferior vena cava in pregnant and nonpregnant women determined by magnetic resonance imaging. Obstet Gynecol Surv. 2015;70(7):425–6.

    Article  Google Scholar 

  96. Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy. Eur Heart J. 2007;8(5):360–8.

    Google Scholar 

  97. Bene R, Barletta G, Mello G, et al. Cardiovascular function in pregnancy: effects of posture. BJOG. 2001;108(4):344–52.

    Article  PubMed  Google Scholar 

  98. Chapman AB, Abraham WT, Zamudio S, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54(6):2056–63.

    Article  CAS  PubMed  Google Scholar 

  99. Clapp JF, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):1469–73.

    Article  PubMed  Google Scholar 

  100. Easterling TR, Benedetti TJ, Schmucker BC, Millard SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76(6):1061–9.

    CAS  PubMed  Google Scholar 

  101. Hennessy TG, MacDonald D, Hennessy MS, et al. Serial changes in cardiac output during normal pregnancy: a Doppler ultrasound study. Eur J Obstet Gynecol Reprod Biol. 1996;70(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  102. Mahendru AA, Everett TR, Wilkinson IB, et al. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014;32(4):849–56.

    Article  CAS  PubMed  Google Scholar 

  103. Pivarnik J, Lee W, Clark L, et al. Cardiac output responses of primigravid women during exercise determined by the direct Fick technique. Obstet Gynecol. 1990;75(6):954–9.

    CAS  PubMed  Google Scholar 

  104. Rang S, de Pablo Lapiedra B, van Montfrans GA, et al. Modelflow: a new method for noninvasive assessment of cardiac output in pregnant women. Am J Obstet Gynecol. 2007;196(3):235 (e1–8).

    Article  PubMed  Google Scholar 

  105. Robson S, Dunlop W, Hunter S. Haemodynamic changes during the early puerperium. BMJ. 1987;294(6579):1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spaanderman M, Ekhart T, van Eyck J, et al. Preeclampsia and maladaptation to pregnancy: a role for atrial natriuretic peptide? Kidney Int. 2001;60(4):1397–406.

    Article  CAS  PubMed  Google Scholar 

  107. Spaanderman M, Meertens M, Van Bussel M, et al. Cardiac output increases independently of basal metabolic rate in early human pregnancy. Am J Physiol. 2000;278(5):H1585–8.

    CAS  Google Scholar 

  108. Clark SL, Cotton DB, Lee W, et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol. 1989;161(6):1439–42.

    Article  CAS  PubMed  Google Scholar 

  109. Caton WL, Roby CC, Reid DE, Gibson JG. Plasma volume and extravascular fluid volume during pregnancy and the puerperium. Am J Obstet Gynecol. 1949;57(3):471–81.

    Article  CAS  PubMed  Google Scholar 

  110. Chanarin I, Rothman D, Berry V. Iron deficiency and its relation to folic-acid status in pregnancy: eesults of a clinical trial. BMJ. 1965;1(5433):480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chesley LC, Chesley ER. The diodrast clearance and renal blood flow in normal pregnant and non-pregnant women. Am J Physiol. 1939;127(4):731–7.

    Google Scholar 

  112. Cohen ME, Thomson KJ. Studies on the circulation in pregnancy. I. The velocity of blood flow and related aspects of the circulation in normal pregnant women. J Clin Invest. 1936;15(6):607–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Edgar W, Rice H. Administration of iron in antenatal clinics. Lancet. 1956;267(6923):599–602.

    Article  Google Scholar 

  114. Ghezzi F, Franchi M, Balestreri D, et al. Bioelectrical impedance analysis during pregnancy and neonatal birth weight. Eur J Obstet Gynecol Reprod Biol. 2001;98(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  115. Hamilton HF. Blood viscosity in pregnancy. BJOG. 1950;57(4):530–8.

    Article  CAS  Google Scholar 

  116. Hutchins C. Plasma volume changes in pregnancy in indian and european primigravidas. Br J Obstet Gynaecol. 1980;87(7):586–9.

    Article  CAS  PubMed  Google Scholar 

  117. Irons D, Baylis P, Davison J. Effect of atrial natriuretic peptide on renal hemodynamics and sodium excretion during human pregnancy. Am J Physiol. 1996;271(1):F239–42.

    CAS  PubMed  Google Scholar 

  118. Karanam V, Page N, Anim-Nyame N. Maternal tissue blood flow and oxygen saturation in pre-eclampsia and intrauterine growth restriction. Eur J Obstet Gynecol Reprod Biol. 2014;178:148–52.

    Article  CAS  PubMed  Google Scholar 

  119. Larciprete G, Valensise H, Vasapollo B, et al. Body composition during normal pregnancy: reference ranges. Acta Diabetol. 2003;40(1):s225–32.

    Article  PubMed  Google Scholar 

  120. Low J, Johnston E, McBride R. Blood volume adjustments in the normal obstetric patient with particular reference to the third trimester of pregnancy. Am J Obstet Gynecol. 1965;91(3):356–63.

    Article  CAS  PubMed  Google Scholar 

  121. Lukaski HC, Hall CB, Siders WA. Assessment of change in hydration in women during pregnancy and postpartum with bioelectrical impedance vectors. Nutrition. 2007;23(7):543–50.

    Article  PubMed  Google Scholar 

  122. Lukaski HC, Siders WA, Nielsen EJ, Hall CB. Total body water in pregnancy: assessment by using bioelectrical impedance. Am J Clin Nutr. 1994;59(3):578–85.

    CAS  PubMed  Google Scholar 

  123. McLennan CE, Thouin L. Blood volume in pregnancy; a critical review and preliminary report of results with a new technique. Am J Obstet Gynecol. 1948;55(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  124. Munnell EW, Taylor HC Jr. Liver blood flow in pregnancy: hepatic vein catheterization. J Clin Invest. 1947;26(5):952–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Paintin D, Thomson A, Hytten F. Iron and the haemoglobin level in pregnancy. BJOG. 1966;73(2):181–90.

    Article  CAS  Google Scholar 

  126. Pivarnik JM, Mauer MB, Ayres NA, et al. Effects of chronic exercise on blood volume expansion and hematologic indices during pregnancy. Obstet Gynecol. 1994;83(2):265–9.

    CAS  PubMed  Google Scholar 

  127. Roscoe M, Donaldson G. The blood in pregnancy. Part II. The blood volume, cell volume and haemoglobin mass. BJOG. 1946;53(6):527–38.

    Article  CAS  Google Scholar 

  128. Rovinsky JJ, Jaffin H. Cardiovascular hemodynamics in pregnancy. Am J Obstet Gynecol. 1965;93(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  129. Silver HM, Seebeck M, Carlson R. Comparison of total blood volume in normal, preeclamptic, and nonproteinuric gestational hypertensive pregnancy by simultaneous measurement of red blood cell and plasma volumes. Am J Obstet Gynecol. 1998;179(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  130. Sims EA, Krantz KE. Serial studies of renal function during pregnancy and the puerperium in normal women. J Clin Invest. 1958;37(12):1764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taylor D, Lind T. Red cell mass during and after normal pregnancy. BJOG. 1979;86(5):364–70.

    Article  CAS  Google Scholar 

  132. Thorburn J, Drummond M, Whigham K, et al. Blood viscosity and haemostatic factors in late pregnancy, pre-eclampsia and fetal growth retardation. BJOG. 1982;89(2):117–22.

    Article  CAS  Google Scholar 

  133. Weir R, Paintin D, Brown J, et al. A serial study in pregnancy of the plasma concentrations of renin, corticosteroids, electrolytes and proteins and of haematocrit and plasma volume. BJOG. 1971;78(7):590–602.

    Article  CAS  Google Scholar 

  134. Whittaker PG, Macphail S, Lind T. Serial hematologic changes and pregnancy outcome. Obstet Gynecol. 1996;88(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  135. Wu P, Udani V, Chan L, et al. Colloid osmotic pressure: variations in normal pregnancy. J Perinat Med. 1983;11(4):193–9.

    Article  CAS  PubMed  Google Scholar 

  136. Sheehan HL, Lynch JB. Pathology of toxaemia of pregnancy, 1st edn. Edinburgh: Churchill Livingstone; 1973. p. 1–986. doi:10.1002/bjs.1800601223.

  137. Cietak K, Newton J. Serial qualitative maternal nephrosonography in pregnancy. Br J Radiol. 1985;58(689):399–404.

    Article  CAS  PubMed  Google Scholar 

  138. Christensen T, Klebe JG, Bertelsen V, Hansen HE. Changes in renal volume during normal pregnancy. Acta Obstet Gynecol Scand. 1989;68(6):541–3.

    Article  CAS  PubMed  Google Scholar 

  139. Franz N. Diagnostische Wertigkeit der dreidimensionalen Volumensonographie einer maternalen Harnstauungsniere im Rahmen der Routineuntersuchung in der Gravidität. Würzburg: University of Würzburg; 2005.

    Google Scholar 

  140. Bailey R, Rolleston G. Kidney length and ureteric dilatation in the puerperium. BJOG. 1971;78(1):55–61.

    Article  CAS  Google Scholar 

  141. McCrory WW. Quantitative measurement of renal function during growth in infancy and childhood. In: McCrory WW, editor. Developmental nephrology, 1st edn. Cambridge: Harvard University Press; 1972: p. 79–122. ISBN:9780674202757.

  142. Le Reubi F. flux sanguin rénal: aspects physiopathologiques, cliniques et thérapeutique. Bâle: Schwabe; 1950.

    Google Scholar 

  143. Battilana C, Zhang H, Olshen RA, et al. PAH extraction and estimation of plasma flow in diseased human kidneys. Am J Physiol. 1991;261(4):F726–33.

    CAS  PubMed  Google Scholar 

  144. Hladunewich M, Lafayette R, Derby G, et al. The dynamics of glomerular filtration in the puerperium. Am J Physiol. 2004;286(3):F496–503.

    CAS  Google Scholar 

  145. Dunlop W. Investigations into the influence of posture on renal plasma flow and glomerular filtration rate during late pregnancy. BJOG. 1976;83(1):17–23.

    Article  CAS  Google Scholar 

  146. Dunlop W. Serial changes in renal haemodynamics during normal human pregnancy. BJOG. 1981;88(1):1–9.

    Article  CAS  Google Scholar 

  147. Ezimokhai M, Davison J, Philips P, Dunlop W. Non-postural serial changes in renal function during the third trimester of normal human pregnancy. BJOG. 1981;88(5):465–71.

    Article  CAS  Google Scholar 

  148. Milne J, Lindheimer M, Davison J. Glomerular heteroporous membrane modeling in third trimester and postpartum before and during amino acid infusion. Am J Physiol. 2002;282(1):F170–5.

    CAS  Google Scholar 

  149. Moran P, Baylis PH, Lindheimer MD, Davison JM. Glomerular ultrafiltration in normal and preeclamptic pregnancy. J Am Soc Nephrol. 2003;14(3):648–52.

    Article  PubMed  Google Scholar 

  150. Roberts M, Lindheimer M, Davison JM. Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am J Physiol. 1996;270(2):F338–43.

    CAS  PubMed  Google Scholar 

  151. Sturgiss S, Wilkinson R, Davison J. Renal reserve during human pregnancy. Am J Physiol. 1996;271(1):F16–20.

    CAS  PubMed  Google Scholar 

  152. Smith M, Moran P, Ward M, Davison J. Assessment of glomerular filtration rate during pregnancy using the MDRD formula. BJOG. 2008;115(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  153. Akbari A, Lepage N, Keely E, et al. Cystatin-C and beta trace protein as markers of renal function in pregnancy. BJOG. 2005;112(5):575–8.

    Article  PubMed  Google Scholar 

  154. Bucht H. Studies on renal function in man; with special reference to glomerular filtration and renal plasma flow in pregnancy. Scand J Clin Lab Invest. 1951;3:1–64.

    Article  CAS  PubMed  Google Scholar 

  155. Davison J, Hytten F. Glomerular filtration during and after pregnancy. BJOG. 1974;81(8):588–95.

    Article  CAS  Google Scholar 

  156. Gibson HM. Plasma volume and glomerular filtration rate in pregnancy and their relation to differences in fetal growth. BJOG. 1973;80(12):1067–74.

    Article  CAS  Google Scholar 

  157. Semple P, Carswell W, Boyle J. Serial studies of the renal clearance of urate and inulin during pregnancy and after the puerperium in normal women. Clin Sci Mol Med. 1974;47:559–65.

    CAS  PubMed  Google Scholar 

  158. Strevens H, Wide-Swensson D, Torffvit O, Grubb A. Serum cystatin C for assessment of glomerular filtration rate in pregnant and non-pregnant women: indications of altered filtration process in pregnancy. Scand J Clin Lab Invest. 2002;62(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  159. Combes BA, Adams RH. Pathophysiology of the liver in pregnancy. In: Assali NS, editor. Pathophysiology of gestation. Maternal disorders. Vol. I, 1st edn. New York: Academic Press; 1972. p. 1–617. ISBN:10:0120655012/ISBN:13:9780120655014.

  160. Dai G, Bustamante JJ, Zou Y, et al. Maternal hepatic growth response to pregnancy in the mouse. Exp Biol Med. 2011;236(11):1322–32.

    Article  CAS  Google Scholar 

  161. Ingerslev M, Teilum G. Biopsy studies on the liver in pregnancy: II. Liver biopsy on normal pregnant women. Acta Obstet Gynecol Scand. 1945;25(3):352–60. doi:10.3109/00016344509162218.

    Article  Google Scholar 

  162. Robson S, Mutch E, Boys R, Woodhouse K. Apparent liver blood flow during pregnancy: a serial study using indocyanine green clearance. BJOG. 1990;97(8):720–4.

    Article  CAS  Google Scholar 

  163. Nakai A, Sekiya I, Oya A, et al. Assessment of the hepatic arterial and portal venous blood flows during pregnancy with Doppler ultrasonography. Arch Gynecol Obstet. 2002;266(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  164. Clapp JF, Stepanchak W, Tomaselli J, et al. Portal vein blood flow: effects of pregnancy, gravity, and exercise. Am J Obstet Gynecol. 2000;183(1):167–72.

    PubMed  Google Scholar 

  165. Hytten F, Paintin D. Increase in plasma volume during normal pregnancy. BJOG. 1963;70(3):402–7.

    Article  CAS  Google Scholar 

  166. Bernstein IM, Ziegler W, Badger GJ. Plasma volume expansion in early pregnancy. Obstet Gynecol. 2001;97(5):669–72.

    CAS  PubMed  Google Scholar 

  167. Pirani B, Campbell D, MacGillivray I. Plasma volume in normal first pregnancy. BJOG. 1973;80(10):884–7.

    Article  CAS  Google Scholar 

  168. Brody S, Spetz S. Plasma, extracellular, and interstitial fluid volumes in pregnancy complicated by toxaemia. Acta Obstet Gynecol Scand. 1967;46(2):138–50.

    CAS  PubMed  Google Scholar 

  169. Chesley L, Duffus G. Posture and apparent plasma volume in late pregnancy. BJOG. 1971;78(5):406–12.

    Article  CAS  Google Scholar 

  170. Duffus GM, MacGillivray I, Dennis KJ. The relationship between baby weight and changes in maternal weight, total body water, plasma volume, electrolytes and proteins and urinary oestriol excretion. BJOG. 1971;78(2):97–104.

    Article  CAS  Google Scholar 

  171. McLennan C. Plasma volume late in pregnancy. Am J Obstet Gynecol. 1950;59(3):662–6.

    Article  CAS  PubMed  Google Scholar 

  172. Paintin D. The size of the total red cell volume in pregnancy. BJOG. 1962;69(5):719–23.

    Article  CAS  Google Scholar 

  173. Myhrman P, Jansson I, Lundgren Y. Skin blood flow in normal pregnancy measured by venous occlusion plethysmography of the hand. Acta Obstet Gynecol Scand. 1980;59(2):107–10.

    Article  CAS  PubMed  Google Scholar 

  174. Spetz S. Peripheral circulation during normal pregnancy. Acta Obstet Gynecol Scand. 1964;43(4):309–29.

    Article  CAS  PubMed  Google Scholar 

  175. Edouard D, Pannier B, London G, et al. Venous and arterial behavior during normal pregnancy. Am J Physiol. 1998;274(5):H1605–12.

    CAS  PubMed  Google Scholar 

  176. Sandström B. Calf blood flow during normal primipregnancy. Acta Obstet Gynecol Scand. 1973;52(3):199–204.

    Article  PubMed  Google Scholar 

  177. Abramovich D. The volume of amniotic fluid in early pregnancy. BJOG. 1968;75(7):728–31.

    Article  CAS  Google Scholar 

  178. Charles D, Jacoby HE, Burgess F. Amniotic fluid volumes in the second half of pregnancy. Am J Obstet Gynecol. 1965;93(7):1042–7.

    Article  CAS  PubMed  Google Scholar 

  179. Elliott P, Inman W. Volume of liquor amnii in normal and abnormal pregnancy. Obstet Gynecol Surv. 1962;17(2):193–4.

    Article  Google Scholar 

  180. Fuchs F. Volume of amniotic fluid at various stages of pregnancy. Clin Obstet Gynecol. 1966;9(2):449–60.

    Article  CAS  PubMed  Google Scholar 

  181. Gadd RL. The volume of the liquor amnii in normal and abnormal pregnancies. BJOG. 1966;73(1):11–22.

    Article  CAS  Google Scholar 

  182. Gillibrand P. Changes in amniotic fluid volume with advancing pregnancy. BJOG. 1969;76(6):527–9.

    Article  CAS  Google Scholar 

  183. Hanon F, Coquoin-Carnot M, Pignard P. Le liquide amniotique. Paris: Masson et Cie Editeurs; 1955.

    Google Scholar 

  184. Hutchinson D, Hunter C, Neslen E, Plentl A. The exchange of water and electrolytes in the mechanism of amniotic fluid formation and the relationship to hydramnios. Surg Gynecol Obstet. 1955;100(4):391–6.

    CAS  PubMed  Google Scholar 

  185. Lind T, Hytten F. Relation of amniotic fluid volume to fetal weight in the first half of pregnancy. Lancet. 1970;295(7657):1147–9.

    Article  Google Scholar 

  186. Monie I. The volume of the amniotic fluid in the early months of pregnancy. Am J Obstet Gynecol. 1953;66(3):616–25.

    Article  CAS  PubMed  Google Scholar 

  187. Nelson MM. Amniotic fluid volumes in early pregnancy. BJOG. 1972;79(1):50–3.

    Article  CAS  Google Scholar 

  188. Lv Otterlo. Wladimiroff J, Wallenburg H. Relationship between fetal urine production and amniotic fluid volume in normal pregnancy and pregnancy complicated by diabetes. BJOG. 1977;84(3):205–9.

    Article  Google Scholar 

  189. Queenan JT, Thompson W, Whitfield C, Shah SI. Amniotic fluid volumes in normal pregnancies. Am J Obstet Gynecol. 1972;114(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  190. Rhodes P. The volume of liquor amnii in early pregnancy. BJOG. 1966;73(1):23–6.

    Article  CAS  Google Scholar 

  191. Sinha R, Carlton M. The volume and composition of amniotic fluid in early pregnancy. BJOG. 1970;77(3):211–4.

    Article  CAS  Google Scholar 

  192. Brace RA, Gilbert WM, Thornburg KL. Vascularization of the ovine amnion and chorion: a morphometric characterization of the surface area of the intramembranous pathway. Am J Obstet Gynecol. 1992;167(6):1747–55.

    Article  CAS  PubMed  Google Scholar 

  193. Bourne G. The anatomy of the human amnion and chorion. Proc R Soc Med. 1966;59(11 Part 1):1127–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Bayer CM, Bani MR, Schneider M, et al. Assessment of breast volume changes during human pregnancy using a three-dimensional surface assessment technique in the prospective CGATE study. Eur J Cancer Prev. 2014;23(3):151–7.

    Article  PubMed  Google Scholar 

  195. Cox DB, Kent JC, Casey TM, et al. Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: endocrine relationships. Exp Physiol. 1999;84(02):421–34.

    Article  CAS  PubMed  Google Scholar 

  196. Hartmann PE, Owns R, Cox DB. Establishing lactation: breast development and control of milk synthesis. Food Nutr Bull. 1996;17(4):1–10.

    Google Scholar 

  197. Hytten F. Clinical and chemical studies in human lactation: VI. The functional capacity of the breast. Br Med J. 1954;1(4867):912–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Thoresen M, Wesche J. Doppler measurements of changes in human mammary and uterine blood flow during pregnancy and lactation. Acta Obstet Gynecol Scand. 1988;67(8):741–5.

    Article  CAS  PubMed  Google Scholar 

  199. Eder M, Schneider A, Feussner H, et al. Brustvolumenbestimmung anhand der 3-D-Oberflächengeometrie: Verifizierung der Methode mit Hilfe der Kernspintomographie/Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging. Biomed Tech (Berl). 2008;53(3):112–21.

    Article  PubMed  Google Scholar 

  200. Graham S, Stanchev P, Lloyd-Smith J, et al. Changes in fibroglandular volume and water content of breast tissue during the menstrual cycle observed by MR imaging at 1.5 T. J Magn Reson Imaging. 1995;5(6):695–701.

    Article  CAS  PubMed  Google Scholar 

  201. Jernström H, Henningson M, Johansson U, Olsson H. Coffee intake and CYP1A2* 1F genotype predict breast volume in young women: implications for breast cancer. Br J Cancer. 2008;99(9):1534–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Kovacs L, Eder M, Hollweck R, et al. New aspects of breast volume measurement using 3-dimensional surface imaging. Ann Plast Surg. 2006;57(6):602–10.

    Article  CAS  PubMed  Google Scholar 

  203. Smith DJ Jr, Palin WE Jr, Katch VL, Bennett JE. Breast volume and anthropomorphic measurements: normal values. Plast Reconstruct Surg. 1986;78(3):331–5.

    Article  Google Scholar 

  204. Kovacs L, Eder M, Hollweck R, et al. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast. 2007;16(2):137–45.

    Article  PubMed  Google Scholar 

  205. Koch MC, Adamietz B, Jud SM, et al. Breast volumetry using a three-dimensional surface assessment technique. Aesthetic Plast Surg. 2011;35(5):847–55.

    Article  PubMed  Google Scholar 

  206. Sambrook M, Bamber J, Minasian H, Hill C. Ultrasonic Doppler study of the hormonal response of blood flow in the normal human breast. Ultrasound Med Biol. 1987;13(3):121–9.

    Article  CAS  PubMed  Google Scholar 

  207. Burd LI, Dorin M, Philipose V, Lemons JA. The relationship of mammary temperature to parturition in human subjects. Am J Obstet Gynecol. 1977;128(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  208. Abramovich D. Fetal factors influencing the volume and composition of liquor amnii. BJOG. 1970;77(10):865–77.

    Article  CAS  Google Scholar 

  209. Blaas HG, Taipale P, Torp H, Eik-Nes S. Three-dimensional ultrasound volume calculations of human embryos and young fetuses: a study on the volumetry of compound structures and its reproducibility. Ultrasound Obstet Gynecol. 2006;27(6):640–6.

    Article  PubMed  Google Scholar 

  210. Blaas H-G, Eik-Nes SH, Berg S, Torp H. In-vivo three-dimensional ultrasound reconstructions of embryos and early fetuses. Lancet. 1998;352(9135):1182–6.

    Article  CAS  PubMed  Google Scholar 

  211. Catalano PM, Tyzbir ED, Allen SR, et al. Evaluation of fetal growth by estimation of neonatal body composition. Obstet Gynecol. 1992;79(1):46–50.

    CAS  PubMed  Google Scholar 

  212. Chien PF, Owen P, Khan KS. Validity of ultrasound estimation of fetal weight. Obstet Gynecol. 2000;95(6 Part 1):856–60.

    CAS  PubMed  Google Scholar 

  213. Deurloo K, Spreeuwenberg M, Rekoert-Hollander M, van Vugt J. Reproducibility of 3-dimensional sonographic measurements of fetal and placental volume at gestational ages of 11–18 weeks. J Clin Ultrasound. 2007;35(3):125–32.

    Article  PubMed  Google Scholar 

  214. Di Naro E, Ghezzi F, Raio L, Franchi M, et al. Umbilical vein blood flow in fetuses with normal and lean umbilical cord. Ultrasound Obstet Gynecol. 2001;17(3):224–8.

    Article  PubMed  Google Scholar 

  215. Ghezzi F, Raio L, Di Naro E, et al. First-trimester sonographic umbilical cord diameter and the growth of the human embryo. Ultrasound Obstet Gynecol. 2001;18(4):348–51.

    Article  CAS  PubMed  Google Scholar 

  216. Gong Q, Roberts N, Garden A, Whitehouse G. Fetal and fetal brain volume estimation in the third trimester of human pregnancy using gradient echo MR imaging. Magn Reson Imaging. 1998;16(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  217. Gruenwald P, Minh HN. Evaluation of body and organ weights in perinatal pathology. II. Weight of body and placenta of surviving and of autopsied infants. Am J Obstet Gynecol. 1961;82:312–9.

    Article  CAS  PubMed  Google Scholar 

  218. Hafner E, Schuchter K, Van Leeuwen M, et al. Three-dimensional sonographic volumetry of the placenta and the fetus between weeks 15 and 17 of gestation. Ultrasound Obstet Gynecol. 2001;18(2):116–20.

    Article  CAS  PubMed  Google Scholar 

  219. Hertig AT, Rock J, Adams EC. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98(3):435–93.

    Article  CAS  PubMed  Google Scholar 

  220. Jackson CM. On the prenatal growth of the human body and the relative growth of the various organs and parts. Am J Anat. 1909;9(1):119–65.

    Article  Google Scholar 

  221. Jirásek J, Uher J, Uhrova M. Water and nitrogen content of the body of young human embryos. Am J Obstet Gynecol. 1966;96:868–71.

    Article  PubMed  Google Scholar 

  222. Lind T, Kendall A, Hytten F. The role of the fetus in the formation of amniotic fluid. BJOG. 1972;79(4):289–98.

    Article  CAS  Google Scholar 

  223. Little WA. The significance of placental/fetal weight ratios. Am J Obstet Gynecol. 1960;79:134–7.

    Article  CAS  PubMed  Google Scholar 

  224. Maršál K, Persson PH, Larsen T, et al. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85(7):843–8.

    Article  PubMed  Google Scholar 

  225. Mayhew T, Sørensen FB, Klebe J, Jackson M. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies. J Anat. 1993;183(Pt 3):545–52.

    PubMed  PubMed Central  Google Scholar 

  226. McKeown T, Record R. The influence of placental size on foetal growth according to sex and order of birth. J Endocrinol. 1953;10(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  227. Milner R, Richards B. An analysis of birth weight by gestational age of infants born in England and Wales, 1967 to 1971. BJOG. 1974;81(12):956–67.

    Article  CAS  Google Scholar 

  228. Molteni R, Stys S, Battaglia F. Relationship of fetal and placental weight in human beings: fetal/placental weight ratios at various gestational ages and birth weight distributions. J Reprod Med. 1978;21(5):327–34.

    CAS  PubMed  Google Scholar 

  229. Osei E, Faulkner K. Fetal position and size data for dose estimation. Br J Radiol. 1999;72(856):363–70.

    Article  CAS  PubMed  Google Scholar 

  230. Pantarotto M, Capitani M, Cardone A, et al. Accrescimento intrauterino in una popolazione ligure. Minerva Ginecola. 1974;26:435–82.

    Google Scholar 

  231. Reece EA, Smikle C, O’connor TZ, et al. A longitudinal study comparing growth in diabetic pregnancies with growth in normal gestations: I. The fetal weight. Obstet Gynecol Surv. 1990;45(3):160–4.

    Article  Google Scholar 

  232. Rooth G, Meirik O, Karlberg P. Estimation of the “normal” growth of Swedish infants at term preliminary report. Acta Paediatr. 1985;74(s319):76–9.

    Article  Google Scholar 

  233. Rousian M, Koning A, Van Oppenraaij R, et al. An innovative virtual reality technique for automated human embryonic volume measurements. Hum Reprod. 2010;25(9):2210–6.

    Article  CAS  PubMed  Google Scholar 

  234. Schild R, Fimmers R, Hansmann M. Fetal weight estimation by three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2000;16(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  235. Thomson A, Billewicz W, Hytten F. The weight of the placenta in relation to birthweight. BJOG. 1969;76(10):865–72.

    Article  CAS  Google Scholar 

  236. Verburg BO, Jaddoe VW, Wladimiroff JW, et al. Fetal hemodynamic adaptive changes related to intrauterine growth the generation R study. Circulation. 2008;117(5):649–59.

    Article  PubMed  Google Scholar 

  237. Wilcox M, Gardosi J, Mongelli M, et al. Birth weight from pregnancies dated by ultrasonography in a multicultural British population. BMJ. 1993;307(6904):588–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bloom W, Bartelmez G. Hematopoiesis in young human embryos. Am J Anat. 1940;67(1):21–53.

    Article  Google Scholar 

  239. Tavian M, Hallais M-F, Péault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999;126(4):793–803.

    CAS  PubMed  Google Scholar 

  240. Kaplan S, Bolender DL. Embryology. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998.

    Google Scholar 

  241. Smith G, Cameron AD. Estimating human fetal blood volume on the basis of gestational age and fetal abdominal circumference. BJOG. 2002;109(6):721–2.

    Article  PubMed  Google Scholar 

  242. Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr. 1983;72(s305):7–11.

    Article  Google Scholar 

  243. Pereira GR, Georgieff MK. Nutritional assessment. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998. p. 383–94.

    Google Scholar 

  244. Widdowson EM. Growth and composition of the fetus and newborn. In: Assali N, editor. Biology of gestation, 1st edition, vol. II., The fetus and neonateNew York: Academic Press; 1968. p. 1–49.

    Google Scholar 

  245. Iob V, Swanson WW. Mineral growth of the human fetus. Am J Dis Chil. 1934;47(2):302–6.

    CAS  Google Scholar 

  246. Fee B, Weil W. Body composition of infants of diabetic mothers by direct analysis. Ann NY Acad Sci. 1963;110(2):869–97.

    Article  CAS  PubMed  Google Scholar 

  247. Gellén J, Pintér S, Falkay G, Kovács L. Total water content and chloride concentration in embryo, placenta and decidua in the course of early human pregnancy. BJOG. 1973;80(4):329–32.

    Article  Google Scholar 

  248. Snyder W, Cook M, Nasset E, et al. Report of the task group on reference man. International Commission of Radiological Protection. 1st ed. Oxford: Pergamon Press; 1974.

    Google Scholar 

  249. Deans H, Smith F, Lloyd D, et al. Fetal fat measurement by magnetic resonance imaging. Br J Radiol. 1989;62(739):603–7.

    Article  CAS  PubMed  Google Scholar 

  250. Takashina T. Hematopoiesis in the human yolk-sac. Am J Anat. 1989;184(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  251. Palis J, Segel G. Developmental biology of erythropoiesis. Blood Rev. 1998;12(2):106–14.

    Article  CAS  PubMed  Google Scholar 

  252. Kelemen E, Calvo W, Fliedner TM. Atlas of human hemopoietic development, 1st edn. Berlin: Springer; 1979. p. 1–266. doi:10.1007/978-3-662-11193-2.

  253. Buchan P. Maternal and fetal blood viscosity throughout normal pregnancy. J Obstet Gynaecol. 1984;4(3):143–50.

    Article  Google Scholar 

  254. D’Souza S, Black P, MacFarlane T, et al. Haematological values in cord blood in relation to fetal hypoxia. BJOG. 1981;88(2):129–32.

    Article  Google Scholar 

  255. Foley M, Isherwood D, McNicol G. Viscosity, haematocrit, fibrinogen and plasma proteins in maternal and cord blood. BJOG. 1978;85(7):500–4.

    Article  CAS  Google Scholar 

  256. Forestier F, Daffos F, Catherine N, et al. Developmental hematopoiesis in normal human fetal blood. Blood. 1991;77(11):2360–3.

    CAS  PubMed  Google Scholar 

  257. Forestier F, Daffos F, Galactèros F, et al. Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res. 1986;20(4):342–6.

    Article  CAS  PubMed  Google Scholar 

  258. Linderkamp O, Nelle M, Kraus M, Zilow EP. The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr. 1992;81(10):745–50.

    Article  CAS  PubMed  Google Scholar 

  259. Millar D, Davis L, Rodeck C, et al. Normal blood cell values in the early mid-trimester fetus. Prenatal Diagn. 1985;5(6):367–73.

    Article  CAS  Google Scholar 

  260. Pahal GS, Jauniaux E, Kinnon C, et al. Normal development of human fetal hematopoiesis between eight and seventeen weeks’ gestation. Am J Obstet Gynecol. 2000;183(4):1029–34.

    Article  CAS  PubMed  Google Scholar 

  261. Thomas DB, Yoffey J. Human foetal haemopoiesis : the cellular composition of foetal blood. Br J Haematol. 1962;8(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  262. Kaufmann P, Scheffen I. Placental development. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998. p. 59–70.

    Google Scholar 

  263. Riccabona M, Nelson T, Pretorius D. Three-dimensional ultrasound: accuracy of distance and volume measurements. Ultrasound Obstet Gynecol. 1996;7(6):429–34.

    Article  CAS  PubMed  Google Scholar 

  264. Garrow J. The relationship of foetal growth to size and composition of the placenta. Proc R Soc Med. 1970;63(5):498.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Laga EM, Driscoll SG, Munro HN. Comparison of placentas from two socioeconomic groups. I. Morphometry. Pediatrics. 1972;50(1):24–32.

    CAS  PubMed  Google Scholar 

  266. Aherne W, Dunnill M. Quantitative aspects of placental structure. J Pathol Bacteriol. 1966;91(1):123–39.

    Article  CAS  PubMed  Google Scholar 

  267. Leary S, Godfrey K, Greenaway L, et al. Contribution of the umbilical cord and membranes to untrimmed placental weight. Placenta. 2003;24(2):276–8.

    Article  CAS  PubMed  Google Scholar 

  268. Laga E, Driscoll S, Munro H. Quantitative studies of human placenta I. Morphometry. Neonatology. 1973;23(3–4):231–59.

    Article  CAS  Google Scholar 

  269. van den Akker C. Fetal food: preemie’s prerequisite?. Rotterdam: Erasmus Universiteit Rotterdam; 2008.

    Google Scholar 

  270. Bouw G, Stolte L, Baak J, Oort J. Quantitative morphology of the placenta II. The growth of the placenta and the problem of postmaturity. Eur J Obstet Gynecol Reprod Biol. 1978;8(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  271. Boyd PA. Quantitative structure of the normal human placenta from 10 weeks of gestation to term. Early Hum Dev. 1984;9(4):297–307.

    Article  CAS  PubMed  Google Scholar 

  272. Boyd PA, Scott A. Quantitative structural studies on human placentas associated with pre-eclampsia, essential hypertension and intrauterine growth retardation. BJOG. 1985;92(7):714–21.

    Article  CAS  Google Scholar 

  273. Burton G, Jauniaux E. Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. BJOG. 1995;102(10):818–25.

    Article  CAS  Google Scholar 

  274. Bush P, Mayhew T, Abramovich D, et al. A quantitative study on the effects of maternal smoking on placental morphology and cadmium concentration. Placenta. 2000;21(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  275. Clapp JF, Kim H, Burciu B, et al. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–7.

    Article  PubMed  Google Scholar 

  276. Costoya AL, Leontic EA, Rosenberg HG, Delgado MA. Morphological study of placental terminal villi in intrahepatic cholestasis of pregnancy: histochemistry, light and electron microscopy. Placenta. 1980;1(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  277. Egbor M, Ansari T, Morris N, et al. Morphometric placental villous and vascular abnormalities in early-and late-onset pre-eclampsia with and without fetal growth restriction. BJOG. 2006;113(5):580–9.

    Article  CAS  PubMed  Google Scholar 

  278. Egbor M, Ansari T, Morris N, et al. Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta? Placenta. 2006;27(6):727–34.

    Article  CAS  PubMed  Google Scholar 

  279. Higgins M, Felle P, Mooney E, et al. Stereology of the placenta in type 1 and type 2 diabetes. Placenta. 2011;32(8):564–9.

    Article  CAS  PubMed  Google Scholar 

  280. Kuzmina IY, Hubina-Vakulik GI, Burton GJ. Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2005;120(2):139–45.

    Article  PubMed  Google Scholar 

  281. Mayhew T, Joy C, Haas J. Structure-function correlation in the human placenta: the morphometric diffusing capacity for oxygen at full term. J Anat. 1984;139(Pt 4):691–708.

    PubMed  PubMed Central  Google Scholar 

  282. Lee R, Mayhew T. Star volumes of villi and intervillous pores in placentae from low and high altitude pregnancies. J Anat. 1995;186(Pt 2):349.

    PubMed  PubMed Central  Google Scholar 

  283. Mayhew T. Patterns of villous and intervillous space growth in human placentas from normal and abnormal pregnancies. Eur J Obstet Gynecol Reprod Biol. 1996;68:75–82.

    Article  CAS  PubMed  Google Scholar 

  284. Mayhew T, Bowles C, Yücel F. Hypobaric hypoxia and villous trophoblast: evidence that human pregnancy at high altitude (3600 m) perturbs epithelial turnover and coagulation-fibrinolysis in the intervillous space. Placenta. 2002;23(2):154–62.

    Article  CAS  PubMed  Google Scholar 

  285. Mayhew T, Jenkins H, Todd B, Clifton V. Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta. 2008;29(4):366–73.

    Article  CAS  PubMed  Google Scholar 

  286. Odibo A, Zhong Y, Longtine M, et al. First-trimester serum analytes, biophysical tests and the association with pathological morphometry in the placenta of pregnancies with preeclampsia and fetal growth restriction. Placenta. 2011;32(4):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Ong S, Tyler D, Moore R, et al. Functional magnetic resonance imaging (magnetization transfer) and stereological analysis of human placentae in normal pregnancy and in pre-eclampsia and intrauterine growth restriction. Placenta. 2004;25(5):408–12.

    Article  CAS  PubMed  Google Scholar 

  288. Reshetnikova OS, Burton GJ, Teleshova OV. Placental histomorphometry and morphometric diffusing capacity of the villous membrane in pregnancies complicated by maternal iron-deficiency anemia. Am J Obstet Gynecol. 1995;173(3):724–7.

    Article  CAS  PubMed  Google Scholar 

  289. Teasdale F. Histomorphometry of the placenta of the diabetic woman: class A diabetes mellitus. Placenta. 1981;2(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  290. Rocha J, Matheus M, Sala M. Effect of cigarette smoke on human placenta morphometry. Int J Gynecol Obstet. 1998;62(3):237–42.

    Article  CAS  Google Scholar 

  291. Antsaklis A, Anastasakis E, Komita O, et al. First trimester 3D volumetry: association of the gestational volumes with the birth weight. J Matern Fetal Neonatal Med. 2011;24(8):1055–9.

    Article  PubMed  Google Scholar 

  292. Bergmann A, Zygmunt M, Clapp J. Running throughout pregnancy: effect on placental villous vascular volume and cell proliferation. Placenta. 2004;25(8):694–8.

    Article  CAS  PubMed  Google Scholar 

  293. Bleker O, Kloosterman G, Breur W, Mieras D. The volumetric growth of the human placenta: a longitudinal ultrasonic study. Am J Obstet Gynecol. 1977;127(6):657–61.

    Article  CAS  PubMed  Google Scholar 

  294. Bujold E, Effendi M, Girard M, et al. Reproducibility of first trimester three-dimensional placental measurements in the evaluation of early placental insufficiency. J Obstet Gynaecol Can. 2009;31(12):1144–8.

    Article  PubMed  Google Scholar 

  295. Burton G, Reshetnikova O, Milovanov A, Teleshova O. Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. Placenta. 1996;17(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  296. Clapp JF, Kim H, Burciu B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–8.

    Article  PubMed  Google Scholar 

  297. Clapp JF, Rizk KH, Appleby-Wineberg SK, Crass JR. Second-trimester placental volumes predict birth weight at term. J Soc Gynecol Invest. 1995;2(1):19–22.

    Article  Google Scholar 

  298. Derwig IE, Akolekar R, Zelaya FO, et al. Association of placental volume measured by MRI and birth weight percentile. J Magn Reson Imaging. 2011;34(5):1125–30.

    Article  PubMed  Google Scholar 

  299. Flo K, Wilsgaard T, Vårtun Å, Acharya G. A longitudinal study of the relationship between maternal cardiac output measured by impedance cardiography and uterine artery blood flow in the second half of pregnancy. BJOG. 2010;117(7):837–44.

    Article  CAS  PubMed  Google Scholar 

  300. Geirsson R, Ogston S, Patel N, Christie A. Growth of total intrauterine, intra-amniotic and placental volume in normal singleton pregnancy measured by ultrasound. Br J Obstet Gynaecol. 1985;92(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  301. Guyomard A, Macé G, Ferdynus C, et al. Reference ranges and distribution of placental volume by 3-dimensional virtual organ computer-aided analysis between 11 and 13 weeks 6 days. J Ultrasound Med. 2013;32(8):1477–82.

    Article  PubMed  Google Scholar 

  302. Hafner E, Metzenbauer M, Höfinger D, et al. Placental growth from the first to the second trimester of pregnancy in SGA-foetuses and pre-eclamptic pregnancies compared to normal foetuses. Placenta. 2003;24(4):336–42.

    Article  CAS  PubMed  Google Scholar 

  303. Hellman LM, Kobayashi M, Tolles W, Cromb E. Ultrasonic studies on the volumetric growth of the human placenta. Am J Obstet Gynecol. 1970;108(5):740–50.

    Article  CAS  PubMed  Google Scholar 

  304. Hohler CW II, Bardawil WA, Mitchell GW Jr. Placental weight and water content relative to blood types of human mothers and their offspring. Obstet Gynecol. 1972;40(6):799–806.

    CAS  PubMed  Google Scholar 

  305. Hoopmann M, Schermuly S, Abele H, et al. First trimester pregnancy volumes and subsequent small for gestational age fetuses. Arch Gynecol Obstet. 2014;290(1):41–6.

    Article  PubMed  Google Scholar 

  306. Howe D, Wheeler T, Osmond C. The influence of maternal haemoglobin and ferritin on mid-pregnancy placental volume. Br J Obstet Gynaecol. 1995;102(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  307. Huster KM, Haas K, Schoenborn J, et al. Reproducibility of placental volume and vasculature indices obtained by 3-dimensional power Doppler sonography. J Ultrasound Med. 2010;29(6):911–6.

    Article  PubMed  Google Scholar 

  308. Jones NW, Raine-Fenning NJ, Mousa HA, et al. Evaluating the intra-and interobserver reliability of three-dimensional ultrasound and power Doppler angiography (3D-PDA) for assessment of placental volume and vascularity in the second trimester of pregnancy. Ultrasound Med Biol. 2011;37(3):376–85.

    Article  PubMed  Google Scholar 

  309. Jones TB, Price RR, Gibbs SJ. Volumetric determination of placental and uterine growth relationships from B-mode ultrasound by serial area-volume determinations. Invest Radiol. 1981;16(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  310. Larsen LG, Clausen HV, Andersen B, Græm N. A stereologic study of postmature placentas fixed by dual perfusion. Am J Obstet Gynecol. 1995;172(2):500–7.

    Article  CAS  PubMed  Google Scholar 

  311. Little RE, Zadorozhnaja TD, Hulchiy OP, et al. Placental weight and its ratio to birthweight in a Ukrainian city. Early Hum Dev. 2003;71(2):117–27.

    Article  PubMed  Google Scholar 

  312. Michailidis G, Morris R, Mamopoulos A, et al. The influence of maternal hematocrit on placental development from the first to the second trimesters of pregnancy. Ultrasound Obstet Gynecol. 2002;20(4):351–5.

    Article  CAS  PubMed  Google Scholar 

  313. Pala HG, Artunc-Ulkumen B, Koyuncu FM, Bulbul-Baytur Y. Three-dimensional ultrasonographic placental volume in gestational diabetes mellitus. J Maternal-Fetal Neonatal Med. 2016;29(4):610–4. doi:10.3109/14767058.2015.1012066.

    Article  CAS  Google Scholar 

  314. Pardi G, Cetin I. Human fetal growth and organ development: 50 years of discoveries. Am J Obstet Gynecol. 2006;194(4):1088–99.

    Article  PubMed  Google Scholar 

  315. Perry IJ, Beevers D, Whincup P, Bareford D. Predictors of ratio of placental weight to fetal weight in multiethnic community. BMJ. 1995;310(6977):436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Pomorski M, Zimmer M, Florjanski J, et al. Comparative analysis of placental vasculature and placental volume in normal and IUGR pregnancies with the use of three-dimensional power Doppler. Arch Gynecol Obstet. 2012;285(2):331–7.

    Article  PubMed  Google Scholar 

  317. Pomorski M, Zimmer M, Fuchs T, et al. Quantitative assessment of placental vasculature and placental volume in normal pregnancies with the use of 3D power Doppler. Adv Med Sci. 2014;59(1):23–7.

    Article  PubMed  Google Scholar 

  318. Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Effects of maternal cigarette smoking on placental volume and vascularization measured by 3-dimensional power Doppler ultrasonography at 11 + 0 to 13 + 6 weeks of gestation. Am J Obstet Gynecol. 2009;200(4):415 (e1–5).

    Article  PubMed  Google Scholar 

  319. Semczuk-Sikora A, Krzyzanowski A, Stachowicz N, et al. Maternal serum concentration of angiogenic factors: PIGF, VEGF and VEGFR-1 and placental volume in pregnancies complicated by intrauterine growth restriction. Ginekologia Polska. 2007;78(10):783–6.

    PubMed  Google Scholar 

  320. Simpson R, Mayhew T, Barnes P. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta. 1992;13(5):501–12.

    Article  CAS  PubMed  Google Scholar 

  321. Stampalija T, Pagnini G, Di Martino D, et al. Placental volume and uterine artery Doppler correlation in first trimester of pregnancy. Ultrasound Obstet Gynecol. 2011;38(S1):80–1.

    Google Scholar 

  322. Veersema D, Vossen M, Uttendorfsky O, Hoogland H. The volumetric growth of the human placenta: a preliminary report of a computer-supported ultrasonographic study. In: Rolfe P, editor. Fetal physiological measurements. 1st ed. Oxford: Butterworth-Heinemann; 1986. p. 49–52.

    Chapter  Google Scholar 

  323. Wegrzyn P, Faro C, Falcon O, et al. Placental volume measured by three-dimensional ultrasound at 11 to 13 + 6 weeks of gestation: relation to chromosomal defects. Ultrasound Obstet Gynecol. 2005;26(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  324. Woelfer B, Hafner E, Metzenbauer M, et al. The influence of leptin on placental and fetal volume measured by three-dimensional ultrasound in the second trimester. Placenta. 2005;26(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  325. Wolf H, Oosting H, Treffers PE. Placental volume measurement by ultrasonography: evaluation of the method. Am J Obstet Gynecol. 1987;156(5):1191–4.

    Article  CAS  PubMed  Google Scholar 

  326. Wolf H, Oosting H, Treffers PE. Second-trimester placental volume measurement by ultrasound: prediction of fetal outcome. Am J Obstet Gynecol. 1989;160(1):121–6.

    Article  CAS  PubMed  Google Scholar 

  327. Wolf H, Oosting H, Treffers PE. A longitudinal study of the relationship between placental and fetal growth as measured by ultrasonography. Am J Obstet Gynecol. 1989;161(5):1140–5.

    Article  CAS  PubMed  Google Scholar 

  328. Artunc Ulkumen B, Pala H, Uyar Y, et al. The alteration in placental volume and placental mean grey value in growth-restricted pregnancies assessed by 3D ultrasound (growth restriction and 3D ultrasonography). J Obstet Gynaecol. J Obstet Gynaecol. 2015;35(5):447–50.

    Article  CAS  PubMed  Google Scholar 

  329. Bouw G, Stolte L, Baak J, Oort J. Quantitative morphology of the placenta 1. Standardization of sampling. Eur J Obstet Gynecol Reprod Biol. 1976;6(6):325–31.

    Article  Google Scholar 

  330. Cabezon C, Jurado M, López G. Histometry of the placental structures involved in the respiratory interchange. Acta Obstet Gynecol Scand. 1985;64(5):411–6.

    Article  CAS  PubMed  Google Scholar 

  331. Larsen LG, Clausen HV, Jønsson L. Stereologic examination of placentas from mothers who smoke during pregnancy. Am J Obstet Gynecol. 2002;186(3):531–7.

    Article  PubMed  Google Scholar 

  332. Yin T, Loughna P, Ong S, et al. No correlation between ultrasound placental grading at 31–34 weeks of gestation and a surrogate estimate of organ function at term obtained by stereological analysis. Placenta. 2009;30(8):726–30.

    Article  CAS  PubMed  Google Scholar 

  333. Kliman HJ. The umbilical cord. In: Knobil EN, Jimmy D, editors. Encyclopedia of Reproduction. New York: Academic Press; 1998. p. 585–96.

    Google Scholar 

  334. Hill LM, DiNofrio DM, Guzick D. Sonographic determination of first trimester umbilical cord length. J Clin Ultrasound. 1994;22(7):435–8.

    Article  CAS  PubMed  Google Scholar 

  335. Naeye RL. Umbilical cord length: clinical significance. J Pediatr. 1985;107(2):278–81.

    Article  CAS  PubMed  Google Scholar 

  336. Stefos T, Sotiriadis A, Vasilios D, et al. Umbilical cord length and parity: the Greek experience. Eur J Obstet Gynecol Reprod Biol. 2003;107(1):41–4.

    Article  PubMed  Google Scholar 

  337. Predanic M, Perni SC. Absence of a relationship between umbilical cord thickness and coiling patterns. J Ultrasound Med. 2005;24(11):1491–6.

    Article  PubMed  Google Scholar 

  338. Raio L, Ghezzi F, Cromi A, et al. Sonographic morphology and hyaluronan content of umbilical cords of healthy and Down syndrome fetuses in early gestation. Early Hum Dev. 2004;77(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  339. Raio L, Ghezzi F, Di Naro E, et al. Sonographic measurement of the umbilical cord and fetal anthropometric parameters. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  340. Sgambati E, Marini M, Thyrion GDZ, et al. Lectin binding in the umbilical cord in altered glycemia. Eur J Obstet Gynecol Reprod Biol. 2007;130(1):30–41.

    Article  CAS  PubMed  Google Scholar 

  341. Weissman A, Jakobi P, Bronshtein M, Goldstein I. Sonographic measurements of the umbilical cord and vessels during normal pregnancies. J Ultrasound Med. 1994;13(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  342. Fitzgerald D, Drumm J. Non-invasive measurement of human fetal circulation using ultrasound: a new method. BMJ. 1977;2(6100):1450–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Barbera A, Galan HL, Ferrazzi E, et al. Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am J Obstet Gynecol. 1999;181(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  344. Bellotti M, Pennati G, De Gasperi C, et al. Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. Am J Physiol. 2000;279(3):H1256–63.

    CAS  Google Scholar 

  345. Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347–58.

    Article  PubMed  Google Scholar 

  346. Boito S, Struijk P, Ursem N, et al. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19(4):344–9.

    Article  CAS  PubMed  Google Scholar 

  347. Di Naro E, Raio L, Ghezzi F, et al. Longitudinal umbilical vein blood flow changes in normal and growth-retarded fetuses. Acta Obstet Gynecol Scand. 2002;81(6):527–33.

    Article  PubMed  Google Scholar 

  348. Flo K, Wilsgaard T, Acharya G. Longitudinal reference ranges for umbilical vein blood flow at a free loop of the umbilical cord. Ultrasound Obstet Gynecol. 2010;36(5):567–72.

    Article  CAS  PubMed  Google Scholar 

  349. Gerson AG, Wallace DM, Stiller RJ, et al. Doppler evaluation of umbilical venous and arterial blood flow in the second and third trimesters of normal pregnancy. Obstet Gynecol. 1987;70(4):622–6.

    CAS  PubMed  Google Scholar 

  350. Haugen G, Kiserud T, Godfrey K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24(6):599–605.

    Article  CAS  PubMed  Google Scholar 

  351. Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  352. Lees C, Albaiges G, Deane C, et al. Assessment of umbilical arterial and venous flow using color Doppler. Ultrasound Obstet Gynecol. 1999;14(4):250–5.

    Article  CAS  PubMed  Google Scholar 

  353. Link G, Clark KE, Lang U. Umbilical blood flow during pregnancy: evidence for decreasing placental perfusion. Am J Obstet Gynecol. 2007;196(5):489 (e1–7).

    Article  PubMed  Google Scholar 

  354. Rizzo G, Capponi A, Elena Pietrolucci M, Arduini D. Umbilical vein blood flow at 11 + 0 to 13 + 6 weeks of gestation. J Matern Fetal Neonatal Med. 2010;23(4):315–9.

    Article  PubMed  Google Scholar 

  355. Sutton MGSJ, Plappert T, Doubilet P. Relationship between placental blood flow and combined ventricular output with gestational age in normal human fetus. Cardiovasc Res. 1991;25(7):603–8.

    Article  CAS  PubMed  Google Scholar 

  356. Sutton MSJ, Theard MA, Bhatia SJ, et al. Changes in placental blood flow in the normal human fetus with gestational age. Pediatr Res. 1990;28(4):383–7.

    Article  CAS  PubMed  Google Scholar 

  357. Tchirikov M, Rybakowski C, Hüneke B, et al. Umbilical vein blood volume flow rate and umbilical artery pulsatility as ‘venous-arterial index’in the prediction of neonatal compromise. Ultrasound Obstet Gynecol. 2002;20(6):580–5.

    Article  CAS  PubMed  Google Scholar 

  358. Tchirikov M, Rybakowski C, Hüneke B, Schröder HJ. Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am J Obstet Gynecol. 1998;178(5):943–9.

    Article  CAS  PubMed  Google Scholar 

  359. Tchirikov M, Strohner M, Förster D, Hüneke B. A combination of umbilical artery PI and normalized blood flow volume in the umbilical vein: venous-arterial index for the prediction of fetal outcome. Eur J Obstet Gynecol Reprod Biol. 2009;142(2):129–33.

    Article  PubMed  Google Scholar 

  360. Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal cardiac output and its distribution to the placenta at 11–20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  361. Yamada T, Okamoto Y, Kasamatsu H, et al. Factors affecting the volume of umbilical cord blood collections. Acta Obstet Gynecol Scand. 2000;79(10):830–3.

    CAS  PubMed  Google Scholar 

  362. Togni F, Araújo E, Vasques F, et al. The cross-sectional area of umbilical cord components in normal pregnancy. Int J Gynecol Obstet. 2007;96(3):156–61.

    Article  CAS  Google Scholar 

  363. Hytten F, Cheyne G. The size and composition of the human pregnant uterus. BJOG. 1969;76(5):400–3.

    Article  CAS  Google Scholar 

  364. Morrione TG, Seifter S. Alteration in the collagen content of the human uterus during pregnancy and post partum involution. J Exp Med. 1962;115(2):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Stieve H. Über die Neubildung von Muskelzellen in der Wand der schwangeren menschlichen Gebärmutter. Zentralbl Gynakol. 1932;56:1442–51.

    Google Scholar 

  366. Woessner J. Formation and breakdown of collagen and elastin in the human uterus during pregnancy and post-partum involution. Biochem J. 1963;89(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  367. Lee A, Sator M, Kratochwil A, et al. Endometrial volume change during spontaneous menstrual cycles: volumetry by transvaginal three-dimensional ultrasound. Fertil Steril. 1997;68(5):831–5.

    Article  CAS  PubMed  Google Scholar 

  368. Raine-Fenning N, Campbell B, Collier J, et al. The reproducibility of endometrial volume acquisition and measurement with the VOCAL-imaging program. Ultrasound Obstet Gynecol. 2002;19(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  369. Schild R, Indefrei D, Eschweiler S, et al. Three-dimensional endometrial volume calculation and pregnancy rate in an in vitro fertilization programme. Hum Reprod. 1999;14(5):1255–8.

    Article  CAS  PubMed  Google Scholar 

  370. Schild RL, Knobloch C, Dorn C, et al. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril. 2001;75(2):361–6.

    Article  CAS  PubMed  Google Scholar 

  371. Lai C, Yung S, Ng E. Endometrial vascularity is lower in pregnancies with pregnancy-induced hypertension or small-for-gestational-age fetus in live birth after in vitro fertilization. Ultrasound Obstet Gynecol. 2014;44(4):455–60.

    Article  CAS  PubMed  Google Scholar 

  372. Pates JA, Hatab MR, McIntire DD, et al. Determining uterine blood flow in pregnancy with magnetic resonance imaging. Magn Reson Imaging. 2010;28(4):507–10.

    Article  PubMed  Google Scholar 

  373. Rosenfeld C, Morriss F Jr, Makowski E, et al. Circulatory changes in the reproductive tissues of ewes during pregnancy. Gynecol Obstet Invest. 1974;5(5–6):252–68.

    Article  CAS  Google Scholar 

  374. Wehrenberg W, Chaichareon D, Dierschke D, et al. Vascular dynamics of the reproductive tract in the female rhesus monkey: relative contributions of ovarian and uterine arteries. Biol Reprod. 1977;17(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  375. Konje JC, Kaufmann P, Bell SC, Taylor DJ. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol. 2001;185(3):608–13.

    Article  CAS  PubMed  Google Scholar 

  376. Rigano S, Ferrazzi E, Boito S, et al. Blood flow volume of uterine arteries in human pregnancies determined using 3D and bi-dimensional imaging, angio-Doppler, and fluid-dynamic modeling. Placenta. 2010;31(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  377. Bernstein IM, Ziegler WF, Leavitt T, Badger GJ. Uterine artery hemodynamic adaptations through the menstrual cycle into early pregnancy. Obstet Gynecol. 2002;99(4):620–4.

    PubMed  Google Scholar 

  378. Hale SA, Schonberg A, Badger GJ, Bernstein IM. Relationship between prepregnancy and early pregnancy uterine blood flow and resistance index. Reprod Sci. 2009;16(11):1091–6.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Konje JC, Howarth ES, Kaufmann P, Taylor DJ. Longitudinal quantification of uterine artery blood volume flow changes during gestation in pregnancies complicated by intrauterine growth restriction. BJOG. 2003;110(3):301–5.

    Article  PubMed  Google Scholar 

  380. Novy M, Thomas C, Lees M. Uterine contractility and regional blood flow responses to oxytocin and prostaglandin E2 in pregnant rhesus monkeys. Am J Obstet Gynecol. 1975;122(4):419–33.

    Article  CAS  PubMed  Google Scholar 

  381. Jouppila R, Jouppila P, Hollmen A, Kuikka J. Effect of segmental extradural analgesia on placental blood flow during normal labour. Br J Anaesth. 1978;50(6):563–7.

    Article  CAS  PubMed  Google Scholar 

  382. Kauppila A, Koskinen M, Puolakka J, et al. Decreased intervillous and unchanged myometrial blood flow in supine recumbency. Obstet Gynecol. 1980;55(2):203–5.

    CAS  PubMed  Google Scholar 

  383. Rekonen A, Luotola H, Pltkänen M, et al. Measurement of intervillous and myometrial blood flow by an intravenous 133Xe method. Br J Obstet Gynaecol. 1976;83(9):723–8.

    Article  CAS  PubMed  Google Scholar 

  384. Jansson I. 133xenon clearance in the myometrium of pregnant and non-pregnant women. Acta Obstet Gynecol Scand. 1969;48(3):302–21.

    Article  CAS  PubMed  Google Scholar 

  385. Browne J, Veall N. The maternal placental blood flow in normotensive and hypertensive women. BJOG. 1953;60(2):141–7.

    Article  CAS  Google Scholar 

  386. Wang YZ, Shuang Z. Vascular biology of the placenta. In: Wang YZ, ediotr. Colloquium series on integrated systems physiology: from molecule to function. Vol. 2. No. 1. San Rafael: Morgan & Claypool Life Sciences; 2010. p. 3–12. doi:10.4199/C00016ED1V01Y201008ISP009.

  387. Hustin J, Schaaps J-P. Echocardiograhic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol. 1987;157(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  388. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–5.

    CAS  PubMed  Google Scholar 

  389. Jauniaux E, Johnson MR, Jurkovic D, et al. The role of relaxin in the development of the uteroplacental circulation in early pregnancy. Obstet Gynecol. 1994;84(3):338–42.

    CAS  PubMed  Google Scholar 

  390. Forssman L. Distribution of blood flow in myomatous uteri as measured by locally injected 133Xenon. Acta Obstet Gynecol Scand. 1976;55(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  391. Roberts VH, Lo JO, Salati JA, et al. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects. Am J Obstet Gynecol. 2016;214(3):369 (e1–8).

    Article  PubMed  PubMed Central  Google Scholar 

  392. McGuire S. IOM (Institute of Medicine) and NRC (National Research Council). 2013. Supplemental nutrition assistance program: examining the evidence to define benefit adequacy. Washington, DC: The National Academies Press, 2013. Adv Nutr. 2013;4(4):477–8.

    Article  PubMed  PubMed Central  Google Scholar 

  393. Krutzen E, Olofsson P, Bäck S-E, Nilsson-Ehle P. Glomerular filtration rate in pregnancy: a study in normal subjects and in patients with hypertension, preeclampsia and diabetes. Scand J Clin Lab Invest. 1992;52(5):387–92.

    Article  CAS  PubMed  Google Scholar 

  394. Chesley LC. Plasma and red cell volumes during pregnancy. Am J Obstet Gynecol. 1972;112(3):440–50.

    Article  CAS  PubMed  Google Scholar 

  395. Hays PM, Cruikshank DP, Dunn LJ. Plasma volume determination in normal and preeclamptic pregnancies. Am J Obstet Gynecol. 1985;151(7):958–66.

    Article  CAS  PubMed  Google Scholar 

  396. Käauäaur K, Jouppila P, Kuikka J, et al. Intervillous blood flow in normal and complicated late pregnancy measured by means of an intravenous 133Xe method. Acta Obstet Gynecol Scand. 1980;59(1):7–10.

    Article  Google Scholar 

  397. de Almeida Pimenta EJ, de Paula CFS, Campos JADB, et al. Three-dimensional sonographic assessment of placental volume and vascularization in pregnancies complicated by hypertensive disorders. J Ultrasound Med. 2014;33(3):483–91.

    Article  PubMed  Google Scholar 

  398. Willmann S, Edginton A, Coboeken K, et al. Risk to the breast-fed neonate from codeine treatment to the mother: a quantitative mechanistic modeling study. Clin Pharmacol Ther. 2009;86(6):634–43.

    Article  CAS  PubMed  Google Scholar 

  399. Stultz EE, Stokes JL, Shaffer ML, et al. Extent of medication use in breastfeeding women. Breastfeed Med. 2007;2(3):145–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kirstin Thelen (Bayer AG) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ince.

Ethics declarations

Funding

This publication and the work involved were funded by Bayer AG.

Conflict of interest

Andre Dallmann is a PhD student at the University of Münster and is employed on a grant from Bayer AG. Ibrahim Ince, Michaela Meyer, Stefan Willmann, and Thomas Eissing were employed by Bayer AG during the preparation of this manuscript and are potential stock holders of Bayer AG. Georg Hempel has received a research grant from Bayer AG since 2008.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallmann, A., Ince, I., Meyer, M. et al. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy. Clin Pharmacokinet 56, 1303–1330 (2017). https://doi.org/10.1007/s40262-017-0539-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0539-z

Keywords

Navigation