Skip to main content
Log in

Development of a Physiologically Based Pharmacokinetic Modelling Approach to Predict the Pharmacokinetics of Vancomycin in Critically Ill Septic Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Sepsis is characterised by an excessive release of inflammatory mediators substantially affecting body composition and physiology, which can be further affected by intensive care management. Consequently, drug pharmacokinetics can be substantially altered. This study aimed to extend a whole-body physiologically based pharmacokinetic (PBPK) model for healthy adults based on disease-related physiological changes of critically ill septic patients and to evaluate the accuracy of this PBPK model using vancomycin as a clinically relevant drug.

Methods

The literature was searched for relevant information on physiological changes in critically ill patients with sepsis, severe sepsis and septic shock. Consolidated information was incorporated into a validated PBPK vancomycin model for healthy adults. In addition, the model was further individualised based on patient data from a study including ten septic patients treated with intravenous vancomycin. Models were evaluated comparing predicted concentrations with observed patient concentration–time data.

Results

The literature-based PBPK model correctly predicted pharmacokinetic changes and observed plasma concentrations especially for the distribution phase as a result of a consideration of interstitial water accumulation. Incorporation of disease-related changes improved the model prediction from 55 to 88% within a threshold of 30% variability of predicted vs. observed concentrations. In particular, the consideration of individualised creatinine clearance data, which were highly variable in this patient population, had an influence on model performance.

Conclusion

PBPK modelling incorporating literature data and individual patient data is able to correctly predict vancomycin pharmacokinetics in septic patients. This study therefore provides essential key parameters for further development of PBPK models and dose optimisation strategies in critically ill patients with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daniels R. Surviving the first hours in sepsis: getting the basics right (an intensivist’s perspective). J Antimicrob Chemother. 2011;66 Suppl. 2:ii11–23. doi:10.1093/jac/dkq515.

  2. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.

    Article  PubMed  Google Scholar 

  3. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54. doi:10.1056/NEJMoa022139.

    Article  PubMed  Google Scholar 

  4. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35(5):1244–50. doi:10.1097/01.CCM.0000261890.41311.E9.

    Article  PubMed  Google Scholar 

  5. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis: the ACCP/SCCM Consensus Conference Committee. Chest. 1992;101(6):1644–55.

    Article  CAS  PubMed  Google Scholar 

  6. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363(7):689–91. doi:10.1056/NEJMcibr1007320.

    Article  CAS  PubMed  Google Scholar 

  7. Fishel RS, Are C, Barbul A. Vessel injury and capillary leak. Crit Care Med. 2003;31(8 Suppl.):S502–11. doi:10.1097/01.CCM.0000081431.50015.46.

    Article  PubMed  Google Scholar 

  8. Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med. 2015;4(2):105–15. doi:10.5492/wjccm.v4.i2.105.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abdel-Razzak Z, Loyer P, Fautrel A, et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol. 1993;44(4):707–15.

    CAS  PubMed  Google Scholar 

  10. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth. 2000;85(4):599–610.

    Article  CAS  PubMed  Google Scholar 

  11. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/s00134-012-2769-8.

    Article  CAS  PubMed  Google Scholar 

  12. De Paepe P, Belpaire FM, Buylaert WA. Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet. 2002;41(14):1135–51. doi:10.2165/00003088-200241140-00002.

    Article  PubMed  Google Scholar 

  13. Gonzalez D, Conrado DJ, Theuretzbacher U, Derendorf H. The effect of critical illness on drug distribution. Curr Pharm Biotechnol. 2011;12(12):2030–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hosein S, Udy AA, Lipman J. Physiological changes in the critically ill patient with sepsis. Curr Pharm Biotechnol. 2011;12(12):1991–5.

    Article  CAS  PubMed  Google Scholar 

  15. Edginton AN, Theil FP, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–52. doi:10.1517/17425255.4.9.1143.

    Article  CAS  PubMed  Google Scholar 

  16. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2002;32(3–4):1–277.

    Article  Google Scholar 

  17. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47(11):743–52. doi:10.2165/00003088-200847110-00005.

    Article  PubMed  Google Scholar 

  18. Bjorkman S, Wada DR, Berling BM, Benoni G. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci. 2001;90(9):1226–41.

    Article  CAS  PubMed  Google Scholar 

  19. Xia B, Heimbach T, Gollen R, et al. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24. doi:10.1208/s12248-013-9505-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–34. doi:10.2165/00003088-200645100-00005.

    Article  CAS  PubMed  Google Scholar 

  21. Willmann S, Hohn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31. doi:10.1007/s10928-007-9053-5.

    Article  PubMed  Google Scholar 

  22. Willmann S, Lippert J, Sevestre M, et al. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4. doi:10.1016/S1478-5382(03)02342-4.

    Article  CAS  Google Scholar 

  23. PK-Sim® software manual. http://www.pk-sim.com. Accessed 22 Aug 2016.

  24. Cutler NR, Narang PK, Lesko LJ, et al. Vancomycin disposition: the importance of age. Clin Pharmacol Ther. 1984;36(6):803–10.

    Article  CAS  PubMed  Google Scholar 

  25. Blouin RA, Bauer LA, Miller DD, et al. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982;21(4):575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  27. Usman M, Hempel G. Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). SpringerPlus. 2016;5:124. doi:10.1186/s40064-016-1778-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Beckmann J, Kees F, Schaumburger J, et al. Tissue concentrations of vancomycin and Moxifloxacin in periprosthetic infection in rats. Acta Orthop. 2007;78(6):766–73. doi:10.1080/17453670710014536.

    Article  PubMed  Google Scholar 

  29. Kees MG, Wicha SG, Seefeld A, et al. Unbound fraction of vancomycin in intensive care unit patients. J Clin Pharmacol. 2013;54(3):318–23. doi:10.1002/jcph.175.

    Article  PubMed  CAS  Google Scholar 

  30. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. doi:10.1186/1471-2288-5-13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. doi:10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pea F, Furlanut M, Negri C, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53(5):1863–7. doi:10.1128/AAC.01149-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS PharmSci 4. 2002;1:E4. doi:10.1208/ps040104.

  34. Sun H, Maderazo EG, Krusell AR. Serum protein-binding characteristics of vancomycin. Antimicrob Agents Chemother. 1993;37(5):1132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haussinger D, Roth E, Lang F, Gerok W. Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet. 1993;341(8856):1330–2.

    Article  CAS  PubMed  Google Scholar 

  36. Margarson MP, Soni NC. Effects of albumin supplementation on microvascular permeability in septic patients. J Appl Physiol (1985). 2002;92(5):2139–45. doi:10.1152/japplphysiol.00201.2001.

  37. Margarson MP, Soni NC. Changes in serum albumin concentration and volume expanding effects following a bolus of albumin 20% in septic patients. Br J Anaesth. 2004;92(6):821–6. doi:10.1093/bja/aeh111.

    Article  CAS  PubMed  Google Scholar 

  38. Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1(8432):781–4.

    Article  CAS  PubMed  Google Scholar 

  39. Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta. 2000;1482(1–2):157–71.

    Article  CAS  PubMed  Google Scholar 

  40. Shedlofsky SI, Israel BC, McClain CJ, et al. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J Clin Invest. 1994;94(6):2209–14. doi:10.1172/JCI117582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shedlofsky SI, Israel BC, Tosheva R, Blouin RA. Endotoxin depresses hepatic cytochrome P450-mediated drug metabolism in women. Br J Clin Pharmacol. 1997;43(6):627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carcillo JA, Doughty L, Kofos D, et al. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med. 2003;29(6):980–4. doi:10.1007/s00134-003-1758-3.

    Article  PubMed  Google Scholar 

  43. Novotny AR, Emmanuel K, Maier S, et al. Cytochrome P450 activity mirrors nitric oxide levels in postoperative sepsis: predictive indicators of lethal outcome. Surgery. 2007;141(3):376–84. doi:10.1016/j.surg.2006.08.011.

    Article  PubMed  Google Scholar 

  44. Kruger PS, Freir NM, Venkatesh B, et al. A preliminary study of atorvastatin plasma concentrations in critically ill patients with sepsis. Intensive Care Med. 2009;35(4):717–21. doi:10.1007/s00134-008-1358-3.

    Article  CAS  PubMed  Google Scholar 

  45. Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93. doi:10.1124/dmd.107.015511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Finn PJ, Plank LD, Clark MA, et al. Progressive cellular dehydration and proteolysis in critically ill patients. Lancet. 1996;347(9002):654–6.

    Article  CAS  PubMed  Google Scholar 

  47. Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998;228(2):146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng AT, Plank LD, Hill GL. Prolonged overexpansion of extracellular water in elderly patients with sepsis. Arch Surg. 1998;133(7):745–51.

    Article  CAS  PubMed  Google Scholar 

  49. Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27(7):1295–302.

    Article  CAS  PubMed  Google Scholar 

  50. Clark MA, Plank LD, Connolly AB, et al. Effect of a chimeric antibody to tumor necrosis factor-alpha on cytokine and physiologic responses in patients with severe sepsis: a randomized, clinical trial. Crit Care Med. 1998;26(10):1650–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ritz P, Vol S, Berrut G, et al. Influence of gender and body composition on hydration and body water spaces. Clin Nutr. 2008;27(5):740–6. doi:10.1016/j.clnu.2008.07.010.

    Article  CAS  PubMed  Google Scholar 

  52. Marx G. Fluid therapy in sepsis with capillary leakage. Eur J Anaesthesiol. 2003;20(6):429–42.

    Article  CAS  PubMed  Google Scholar 

  53. Clark MA, Hentzen BT, Plank LD, Hill GI. Sequential changes in insulin-like growth factor 1, plasma proteins, and total body protein in severe sepsis and multiple injury. JPEN J Parenter Enteral Nutr. 1996;20(5):363–70.

    Article  CAS  PubMed  Google Scholar 

  54. Abu-Zidan FM, Plank LD, Windsor JA. Proteolysis in severe sepsis is related to oxidation of plasma protein. Eur J Surg. 2002;168(2):119–23. doi:10.1080/11024150252884359.

    Article  CAS  PubMed  Google Scholar 

  55. Cohn SH, Vartsky D, Yasumura S, et al. Compartmental body composition based on total-body nitrogen, potassium, and calcium. Am J Physiol. 1980;239(6):E524–30.

    CAS  PubMed  Google Scholar 

  56. Cohn SH, Vartsky D, Yasumura S, et al. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol. 1983;244(3):E305–10.

    CAS  PubMed  Google Scholar 

  57. Wang Z, Shen W, Kotler DP, et al. Total body protein: a new cellular level mass and distribution prediction model. Am J Clin Nutr. 2003;78(5):979–84.

    CAS  PubMed  Google Scholar 

  58. Vartsky D, Ellis KJ, Cohn SH. In vivo measurement of body nitrogen by analysis of prompt gammas from neutron capture. J Nucl Med. 1979;20(11):1158–65.

    CAS  PubMed  Google Scholar 

  59. Burkinshaw L, Morgan DB, Silverton NP, Thomas RD. Total body nitrogen and its relation to body potassium and fat-free mass in healthy subjects. Clin Sci (Lond). 1981;61(4):457–62.

    Article  CAS  PubMed  Google Scholar 

  60. Lukaski HC, Mendez J, Buskirk ER, Cohn SH. A comparison of methods of assessment of body composition including neutron activation analysis of total body nitrogen. Metabolism. 1981;30(8):777–82.

    Article  CAS  PubMed  Google Scholar 

  61. Young JD. The heart and circulation in severe sepsis. Br J Anaesth. 2004;93(1):114–20. doi:10.1093/bja/aeh171.

    Article  CAS  PubMed  Google Scholar 

  62. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11. doi:10.1093/bja/aep339.

    Article  CAS  PubMed  Google Scholar 

  63. Carlsson M, Andersson R, Bloch KM, et al. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson. 2012;14:51. doi:10.1186/1532-429X-14-51.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tristani FE, Cohn JN. Studies in clinical shock and hypotension. VII. Renal hemodynamics before and during treatment. Circulation. 1970;42(5):839–51.

    Article  CAS  PubMed  Google Scholar 

  65. Brenner M, Schaer GL, Mallory DL, et al. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest. 1990;98(1):170–9.

    Article  CAS  PubMed  Google Scholar 

  66. Prowle JR, Molan MP, Hornsey E, Bellomo R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med. 2012;40(6):1768–76. doi:10.1097/CCM.0b013e318246bd85.

    Article  PubMed  Google Scholar 

  67. Lucas CE, Rector FE, Werner M, Rosenberg IK. Altered renal homeostasis with acute sepsis: clinical significance. Arch Surg. 1973;106(4):444–9.

    Article  CAS  PubMed  Google Scholar 

  68. Rector F, Goyal SC, Rosenberg IK, Lucas CE. Renal hyperemia in association with clinical sepsis. Surg Forum. 1972;23:51–3.

    CAS  PubMed  Google Scholar 

  69. Zacho HD, Henriksen JH, Abrahamsen J. Chronic intestinal ischemia and splanchnic blood-flow: reference values and correlation with body-composition. World J Gastroenterol. 2013;19(6):882–8. doi:10.3748/wjg.v19.i6.882.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Madsen JL, Sondergaard SB, Moller S. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans. Scand J Gastroenterol. 2006;41(1):87–92. doi:10.1080/00365520510023882.

    Article  PubMed  Google Scholar 

  71. Takala J. Determinants of splanchnic blood flow. Br J Anaesth. 1996;77(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  72. Sime FB, Udy AA, Roberts JA. Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol. 2015;24:1–6. doi:10.1016/j.coph.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  73. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20(6):588–95. doi:10.1097/MCC.0000000000000153.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abduljalil K, Furness P, Johnson TN, et al. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–96. doi:10.2165/11597440-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  75. Rittirsch D, Hoesel LM, Ward PA. The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol. 2007;81(1):137–43. doi:10.1189/jlb.0806542.

    Article  CAS  PubMed  Google Scholar 

  76. Michie HR. The value of animal models in the development of new drugs for the treatment of the sepsis syndrome. J Antimicrob Chemother. 1998;41 Suppl. A:47–9.

  77. Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P. Experimental models of sepsis and their clinical relevance. Shock. 2008;30(Suppl. 1):53–9. doi:10.1097/SHK.0b013e318181a343.

    Article  CAS  PubMed  Google Scholar 

  78. The DrugBank database. http://www.drugbank.ca/drugs/DB00512. Accessed 31 Jul 2015.

  79. Jia Z, O’Mara ML, Zuegg J, et al. Vancomycin: ligand recognition, dimerization and super-complex formation. FEBS J. 2013;280(5):1294–307. doi:10.1111/febs.12121.

    Article  CAS  PubMed  Google Scholar 

  80. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98. doi:10.2146/ajhp080434.

    Article  CAS  PubMed  Google Scholar 

  81. Udy AA, Putt MT, Boots RJ, Lipman J. ARC: augmented renal clearance. Curr Pharm Biotechnol. 2011;12(12):2020–9.

    Article  CAS  PubMed  Google Scholar 

  82. Lopes JA, Jorge S, Resina C, et al. Acute kidney injury in patients with sepsis: a contemporary analysis. Int J Infect Dis. 2009;3(2):176–81. doi:10.1016/j.ijid.2008.05.1231.

    Article  Google Scholar 

  83. Oppert M, Engel C, Brunkhorst FM, German Competence Network S, et al. Acute renal failure in patients with severe sepsis and septic shock: a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant. 2008;23(3):904–9. doi:10.1093/ndt/gfm610.

    Article  PubMed  Google Scholar 

  84. Dolton M, Xu H, Cheong E, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns. 2010;36(4):469–76. doi:10.1016/j.burns.2009.08.010.

    Article  PubMed  Google Scholar 

  85. Medellin-Garibay SE, Ortiz-Martin B, Rueda-Naharro A, et al. Pharmacokinetics of vancomycin and dosing recommendations for trauma patients. J Antimicrob Chemother. 2016;71(2):471–9. doi:10.1093/jac/dkv372.

    Article  CAS  PubMed  Google Scholar 

  86. Launay-Vacher V, Izzedine H, Mercadal L, Deray G. Clinical review: use of vancomycin in haemodialysis patients. Crit Care. 2002;6(4):313–6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dykhuizen RS, Harvey G, Stephenson N, et al. Protein binding and serum bactericidal activities of vancomycin and teicoplanin. Antimicrob Agents Chemother. 1995;39(8):1842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wittendorf RW, Swagzdis JE, Gifford R, Mico BA. Protein binding of glycopeptide antibiotics with diverse physical-chemical properties in mouse, rat, and human serum. J Pharmacokinet Biopharm. 1987;15(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  89. Chen Y, Norris RL, Schneider JJ, Ravenscroft PJ. The influence of vancomycin concentration and the pH of plasma on vancomycin protein binding. J Pharmacol Toxicol Methods. 1992;28(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  90. Takács-Novák K, Noszál B. Acid-base properties and proton-speciation of vancomycin. Int J Pharm. 1993;89(3):261–3.

    Article  Google Scholar 

  91. Magid E, Guldager H, Hesse D, Christiansen MS. Monitoring urinary orosomucoid in acute inflammation: observations on urinary excretion of orosomucoid, albumin, alpha1-microglobulin, and IgG. Clin Chem. 2005;51(11):2052–8. doi:10.1373/clinchem.2005.055442.

    Article  CAS  PubMed  Google Scholar 

  92. Ho JT, Al-Musalhi H, Chapman MJ, et al. Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab. 2006;91(1):105–14. doi:10.1210/jc.2005-0265.

    Article  CAS  PubMed  Google Scholar 

  93. Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47(11):3548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sauermann R, Delle-Karth G, Marsik C, et al. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother. 2005;49(2):650–5. doi:10.1128/AAC.49.2.650-655.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martin CP, Talbert RL, Burgess DS, Peters JI. Effectiveness of statins in reducing the rate of severe sepsis: a retrospective evaluation. Pharmacotherapy. 2007;27(1):20–6. doi:10.1592/phco.27.1.20.

    Article  CAS  PubMed  Google Scholar 

  96. Dahn MS, Mitchell RA, Lange MP, et al. Hepatic metabolic response to injury and sepsis. Surgery. 1995;117(5):520–30.

    Article  CAS  PubMed  Google Scholar 

  97. Doise JM, Aho LS, Quenot JP, et al. Plasma antioxidant status in septic critically ill patients: a decrease over time. Fundam Clin Pharmacol. 2008;22(2):203–9. doi:10.1111/j.1472-8206.2008.00573.x.

    Article  CAS  PubMed  Google Scholar 

  98. van der Flier M, van Leeuwen HJ, van Kessel KP, et al. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005;23(1):35–8.

    Article  PubMed  CAS  Google Scholar 

  99. Joynt GM, Lipman J, Gomersall CD, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother. 2001;47(4):421–9.

    Article  CAS  PubMed  Google Scholar 

  100. Brink AJ, Richards GA, Schillack V, et al. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents. 2009;33(5):432–6. doi:10.1016/j.ijantimicag.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  101. Dolecek M, Svoboda P, Kantorova I, et al. Therapeutic influence of 20% albumin versus 6% hydroxyethylstarch on extravascular lung water in septic patients: a randomized controlled trial. Hepatogastroenterology. 2009;56(96):1622–8.

    CAS  PubMed  Google Scholar 

  102. Memis D, Gursoy O, Tasdogan M, et al. High C-reactive protein and low cholesterol levels are prognostic markers of survival in severe sepsis. J Clin Anesth. 2007;19(3):186–91. doi:10.1016/j.jclinane.2006.10.008.

    Article  CAS  PubMed  Google Scholar 

  103. Joukhadar C, Klein N, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med. 2002;30(7):1478–82.

    Article  CAS  PubMed  Google Scholar 

  104. Molnar Z, Mikor A, Leiner T, Szakmany T. Fluid resuscitation with colloids of different molecular weight in septic shock. Intensive Care Med. 2004;30(7):1356–60. doi:10.1007/s00134-004-2278-5.

    Article  PubMed  Google Scholar 

  105. Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  106. Crenn P, Neveux N, Chevret S, et al. Plasma L-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study. J Crit Care. 2014;29(2):315 e311–6. doi:10.1016/j.jcrc.2013.11.015.

  107. Bilgrami I, Roberts JA, Wallis SC, et al. Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2010;54(7):2974–8. doi:10.1128/AAC.01582-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sallisalmi M, Tenhunen J, Kultti A, et al. Plasma hyaluronan and hemorheology in patients with septic shock: a clinical and experimental study. Clin Hemorheol Microcirc. 2014;56(2):133–44. doi:10.3233/CH-131677.

    CAS  PubMed  Google Scholar 

  109. Marx G, Vangerow B, Burczyk C, et al. Evaluation of noninvasive determinants for capillary leakage syndrome in septic shock patients. Intensive Care Med. 2000;26(9):1252–8.

    Article  CAS  PubMed  Google Scholar 

  110. Iglesias J, Marik PE, Levine JS, Norasept II. Study Investigators. Elevated serum levels of the type I and type II receptors for tumor necrosis factor-alpha as predictive factors for ARF in patients with septic shock. Am J Kidney Dis. 2003;41(1):62–75. doi:10.1053/ajkd.2003.50024.

    Article  CAS  PubMed  Google Scholar 

  111. Memis D, Kargi M, Sut N. Effects of propofol and dexmedetomidine on indocyanine green elimination assessed with LIMON to patients with early septic shock: a pilot study. J Crit Care. 2009;24(4):603–8. doi:10.1016/j.jcrc.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  112. Charpentier J, Mira J-P. Efficacy and tolerance of hyperoncotic albumin administration in septic shock patients: the EARSS study. Intensive Care Med. 2011;37(Suppl. 1):S115.

    Google Scholar 

  113. Xiao K, Su L, Yan P, et al. alpha-1-Acid glycoprotein as a biomarker for the early diagnosis and monitoring the prognosis of sepsis. J Crit Care. 2015;30(4):744–51. doi:10.1016/j.jcrc.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  114. Barroso-Sousa R, Lobo RR, Mendonca PR, et al. Decreased levels of alpha-1-acid glycoprotein are related to the mortality of septic patients in the emergency department. Clinics. 2013;68(8):1134–9. doi:10.6061/clinics/2013(08)12.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brinkman-van der Linden EC, van Ommen EC, van Dijk W. Glycosylation of alpha 1-acid glycoprotein in septic shock: changes in degree of branching and in expression of sialyl Lewis(x) groups. Glycoconj J. 1996;13(1):27–31.

  116. Juncal VR, Britto Neto LA, Camelier AA, et al. Clinical impact of sepsis at admission to the ICU of a private hospital in Salvador. Brazil. J Bras Pneumol. 2011;37(1):85–92.

    Article  PubMed  Google Scholar 

  117. Reggiori G, Occhipinti G, De Gasperi A, et al. Early alterations of red blood cell rheology in critically ill patients. Crit Care Med. 2009;37(12):3041–6. doi:10.1097/CCM.0b013e3181b02b3f.

    Article  PubMed  Google Scholar 

  118. Piagnerelli M, Boudjeltia KZ, Brohee D, et al. Modifications of red blood cell shape and glycoproteins membrane content in septic patients. Adv Exp Med Biol. 2003;510:109–14.

    Article  CAS  PubMed  Google Scholar 

  119. Davies GR, Mills GM, Lawrence M, et al. The role of whole blood impedance aggregometry and its utilisation in the diagnosis and prognosis of patients with systemic inflammatory response syndrome and sepsis in acute critical illness. PLoS One. 2014;9(9):e108589. doi:10.1371/journal.pone.0108589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Alt E, Amann-Vesti BR, Madl C, et al. Platelet aggregation and blood rheology in severe sepsis/septic shock: relation to the Sepsis-related Organ Failure Assessment (SOFA) score. Clin Hemorheol Microcirc. 2004;30(2):107–15.

    PubMed  Google Scholar 

  121. Kirschenbaum LA, Aziz M, Astiz ME, et al. Influence of rheologic changes and platelet-neutrophil interactions on cell filtration in sepsis. Am J Respir Crit Care Med. 2000;161(5):1602–7. doi:10.1164/ajrccm.161.5.9902105.

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez M, Jimenez-Lendinez M, Cidoncha M, et al. Comparison of fluid compartments and fluid responsiveness in septic and non-septic patients. Anaesth Intensive Care. 2011;39(6):1022–9.

    CAS  PubMed  Google Scholar 

  123. Plataki M, Kashani K, Cabello-Garza J, et al. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clin J Am Soc Neprhol. 2011;6(7):1744–51. doi:10.2215/CJN.05480610.

    Article  Google Scholar 

  124. Reinelt H, Radermacher P, Fischer G, et al. Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology. 1997;86(4):818–24.

    Article  CAS  PubMed  Google Scholar 

  125. Udy AA, Roberts JA, Shorr AF, et al. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17(1):R35. doi:10.1186/cc12544.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wilhelm J, Hettwer S, Schuermann M, et al. Severity of cardiac impairment in the early stage of community-acquired sepsis determines worse prognosis. Clin Res Cardiol. 2013;102(10):735–44. doi:10.1007/s00392-013-0584-z.

    Article  CAS  PubMed  Google Scholar 

  127. Spanos A, Jhanji S, Vivian-Smith A, et al. Early microvascular changes in sepsis and severe sepsis. Shock. 2010;33(4):387–91. doi:10.1097/SHK.0b013e3181c6be04.

    Article  PubMed  Google Scholar 

  128. Guarracino F, Ferro B, Forfori F, et al. Jugular vein distensibility predicts fluid responsiveness in septic patients. Crit Care. 2014;18(6):647. doi:10.1186/s13054-014-0647-1.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jakob SM, Ruokonen E, Takala J. Effects of dopamine on systemic and regional blood flow and metabolism in septic and cardiac surgery patients. Shock. 2002;18(1):8–13.

    Article  PubMed  Google Scholar 

  130. Michalopoulos A, Stavridis G, Geroulanos S. Severe sepsis in cardiac surgical patients. Eur J Surg. 1998;164(3):217–22. doi:10.1080/110241598750004670.

    Article  CAS  PubMed  Google Scholar 

  131. Klinzing S, Simon M, Reinhart K, et al. Moderate-dose vasopressin therapy may impair gastric mucosal perfusion in severe sepsis: a pilot study. Anesthesiology. 2011;114(6):1396–402. doi:10.1097/ALN.0b013e318219d74f.

    Article  CAS  PubMed  Google Scholar 

  132. Edul VS, Ince C, Navarro N, et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014;4:39. doi:10.1186/s13613-014-0039-3.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lorente JA, Landin L, De Pablo R, et al. Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med. 1993;21(9):1312–8.

    Article  CAS  PubMed  Google Scholar 

  134. Sair M, Etherington PJ, Peter Winlove C, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29(7):1343–9.

    Article  CAS  PubMed  Google Scholar 

  135. Wilkman E, Kaukonen KM, Pettila V, et al. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesth Scand. 2013;57(4):431–42. doi:10.1111/aas.12056.

    Article  CAS  PubMed  Google Scholar 

  136. Slagt C, de Leeuw MA, Beute J, et al. Cardiac output measured by uncalibrated arterial pressure waveform analysis by recently released software version 3.02 versus thermodilution in septic shock. J Clin Monit Comput. 2013;27(2):171–7. doi:10.1007/s10877-012-9410-9.

    Article  PubMed  Google Scholar 

  137. Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39(8):1435–43. doi:10.1007/s00134-013-2982-0.

    Article  CAS  PubMed  Google Scholar 

  138. Enrico C, Kanoore Edul VS, Vazquez AR, et al. Systemic and microcirculatory effects of dobutamine in patients with septic shock. J Crit Care. 2012;27(6):630–8. doi:10.1016/j.jcrc.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  139. Joly LM, Monchi M, Cariou A, et al. Effects of dobutamine on gastric mucosal perfusion and hepatic metabolism in patients with septic shock. Am J Respir Crit Care Med. 1999;160(6):1983–6. doi:10.1164/ajrccm.160.6.9708113.

    Article  CAS  PubMed  Google Scholar 

  140. Gordon AC, Wang N, Walley KR, et al. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest. 2012;142(3):593–605. doi:10.1378/chest.11-2604.

    Article  CAS  PubMed  Google Scholar 

  141. De Backer D, Creteur J, Dubois MJ, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34(2):403–8.

    Article  PubMed  Google Scholar 

  142. Pathil A, Stremmel W, Schwenger V, Eisenbach C. The influence of haemodialysis on haemodynamic measurements using transpulmonary thermodilution in patients with septic shock: an observational study. Eur J Anaesthesiol. 2013;30(1):16–20. doi:10.1097/EJA.0b013e328358543a.

    Article  PubMed  Google Scholar 

  143. Rank N, Michel C, Haertel C, et al. N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Crit Care Med. 2000;28(12):3799–807.

    Article  CAS  PubMed  Google Scholar 

  144. Ruiz C, Hernandez G, Godoy C, et al. Sublingual microcirculatory changes during high-volume hemofiltration in hyperdynamic septic shock patients. Crit Care. 2010;14(5):R170. doi:10.1186/cc9271.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hamzaoui O, Georger JF, Monnet X, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14(4):R142. doi:10.1186/cc9207.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wiramus S, Textoris J, Bardin R, et al. Isoproterenol infusion and microcirculation in septic shock. Heart Lung Vessel. 2014;6(4):274–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Leone M, Boyadjiev I, Boulos E, et al. A reappraisal of isoproterenol in goal-directed therapy of septic shock. Shock. 2006;26(4):353–7. doi:10.1097/01.shk.0000226345.55657.66.

    Article  CAS  PubMed  Google Scholar 

  148. Perner A, Haase N, Wiis J, et al. Central venous oxygen saturation for the diagnosis of low cardiac output in septic shock patients. Acta Anaesth Scand. 2010;54(1):98–102. doi:10.1111/j.1399-6576.2009.02086.x.

    Article  CAS  PubMed  Google Scholar 

  149. Palizas F, Dubin A, Regueira T, et al. Gastric tonometry versus cardiac index as resuscitation goals in septic shock: a multicenter, randomized, controlled trial. Crit Care. 2009;13(2):R44. doi:10.1186/cc7767.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Creteur J, De Backer D, Sakr Y, et al. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32(4):516–23. doi:10.1007/s00134-006-0070-4.

    Article  PubMed  Google Scholar 

  151. Georger JF, Hamzaoui O, Chaari A, et al. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36(11):1882–9. doi:10.1007/s00134-010-2013-3.

    Article  CAS  PubMed  Google Scholar 

  152. Klinzing S, Simon M, Reinhart K, et al. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med. 2003;31(11):2646–50. doi:10.1097/01.CCM.0000094260.05266.F4.

    Article  CAS  PubMed  Google Scholar 

  153. Lauzier F, Levy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32(11):1782–9. doi:10.1007/s00134-006-0378-0.

    Article  CAS  PubMed  Google Scholar 

  154. Monnet X, Jabot J, Maizel J, et al. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39(4):689–94. doi:10.1097/CCM.0b013e318206d2a3.

    Article  CAS  PubMed  Google Scholar 

  155. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99(3):337–42. doi:10.1093/bja/aem177.

    Article  CAS  PubMed  Google Scholar 

  156. Albanese J, Leone M, Garnier F, et al. Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004;126(2):534–9. doi:10.1378/chest.126.2.534.

    Article  CAS  PubMed  Google Scholar 

  157. Auxiliadora Martins M, Coletto FA, Campos AD, Basile-Filho A. Indirect calorimetry can be used to measure cardiac output in septic patients? Acta Cir Bras. 2008;23 Suppl. 1:118–25 (discussion 125).

  158. Morelli A, Rocco M, Conti G, et al. Effects of terlipressin on systemic and regional haemodynamics in catecholamine-treated hyperkinetic septic shock. Intensive Care Med. 2004;30(4):597–604. doi:10.1007/s00134-003-2094-3.

    Article  PubMed  Google Scholar 

  159. Pierrakos C, Velissaris D, Scolletta S, et al. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8. doi:10.1007/s00134-011-2457-0.

    Article  PubMed  Google Scholar 

  160. Meier-Hellmann A, Bredle DL, Specht M, et al. The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med. 1997;23(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  161. Levy B, Nace L, Bollaert PE, et al. Comparison of systemic and regional effects of dobutamine and dopexamine in norepinephrine-treated septic shock. Intensive Care Med. 1999;25(9):942–8.

    Article  CAS  PubMed  Google Scholar 

  162. Redl-Wenzl EM, Armbruster C, Edelmann G, et al. The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med. 1993;19(3):151–4.

    Article  CAS  PubMed  Google Scholar 

  163. Guerin JP, Levraut J, Samat-Long C, et al. Effects of dopamine and norepinephrine on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients. Shock. 2005;23(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  164. Meier-Hellmann A, Specht M, Hannemann L, et al. Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Intensive Care Med. 1996;22(12):1354–9.

    Article  CAS  PubMed  Google Scholar 

  165. Meier-Hellmann A, Bredle DL, Specht M, et al. Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine. Crit Care Med. 1999;27(10):2166–71.

    Article  CAS  PubMed  Google Scholar 

  166. Kiefer P, Tugtekin I, Wiedeck H, e tal. Effect of a dopexamine-induced increase in cardiac index on splanchnic hemodynamics in septic shock. Am J Respir Crit Care Med. 2000;161(3 Pt 1):775–9. doi:10.1164/ajrccm.161.3.9901113.

  167. Sakka SG, Meier-Hellmann A. Reinhart K.) Do fluid administration and reduction in norepinephrine dose improve global and splanchnic haemodynamics? Br J Anaesth. 2000;84(6):758–62.

    Article  CAS  PubMed  Google Scholar 

  168. Kern H, Schroder T, Kaulfuss M, et al. Enoximone in contrast to dobutamine improves hepatosplanchnic function in fluid-optimized septic shock patients. Crit Care Med. 2001;29(8):1519–25.

    Article  CAS  PubMed  Google Scholar 

  169. Meier-Hellmann A, Reinhart K, Bredle DL, et al. Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med. 1997;25(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  170. De Backer D, Creteur J, Silva E, Vincent JL. The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med. 2001;29(2):256–61.

    Article  PubMed  Google Scholar 

  171. Sakka SG, Reinhart K, Meier-Hellmann A. Does the optimization of cardiac output by fluid loading increase splanchnic blood flow? Br J Anaesth. 2001;86(5):657–62.

    Article  CAS  PubMed  Google Scholar 

  172. Mazul-Sunko B, Zarkovic N, Vrkic N, Antoljak N, Bekavac Beslin M, Nikolic Heitzler V, Siranovic M, Krizmanic-Dekanic A, Klinger R. Proatrial natriuretic peptide (1-98), but not cystatin C, is predictive for occurrence of acute renal insufficiency in critically ill septic patients. Nephron Clin Pract. 2004;97(3):c103–7. doi:10.1159/000078638.

    Article  CAS  PubMed  Google Scholar 

  173. Novelli A, Adembri C, Livi P, et al. Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin Pharmacokinet. 2005;44(5):539–49.

    Article  CAS  PubMed  Google Scholar 

  174. Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA. Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents. 2002;19(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  175. Lherm T, Troche G, Rossignol M, et al. Renal effects of low-dose dopamine in patients with sepsis syndrome or septic shock treated with catecholamines. Intensive Care Med. 1996;22(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  176. Lipman J, Wallis SC, Rickard CM, Fraenkel D. Low cefpirome levels during twice daily dosing in critically ill septic patients: pharmacokinetic modelling calls for more frequent dosing. Intensive Care Med. 2001;27(2):363–70.

    Article  CAS  PubMed  Google Scholar 

  177. Kieft H, Hoepelman AI, Knupp CA, et al. Pharmacokinetics of cefepime in patients with the sepsis syndrome. J Antimicrob Chemother. 1993;32 Suppl. B:117–22.

  178. Schmoelz M, Schelling G, Dunker M, Irlbeck M. Comparison of systemic and renal effects of dopexamine and dopamine in norepinephrine-treated septic shock. J Cardiothorac Vasc Anestha. 2006;20(2):173–8. doi:10.1053/j.jvca.2005.10.016.

    Article  CAS  Google Scholar 

  179. Deruddre S, Cheisson G, Mazoit JX, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33(9):1557–62. doi:10.1007/s00134-007-0665-4.

    Article  PubMed  Google Scholar 

  180. Buijk SE, Mouton JW, Gyssens IC, et al. Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med. 2002;28(7):936–42. doi:10.1007/s00134-002-1313-7.

    Article  CAS  PubMed  Google Scholar 

  181. Voerman HJ, Stehouwer CD, van Kamp GJ, et al. Plasma endothelin levels are increased during septic shock. Crit Care Med. 1992;20(8):1097–101.

    Article  CAS  PubMed  Google Scholar 

  182. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.

    Article  CAS  PubMed  Google Scholar 

  183. Girbes AR, Patten MT, McCloskey BV, et al. The renal and neurohumoral effects of the addition of low-dose dopamine in septic critically ill patients. Intensive Care Med. 2000;26(11):1685–9.

    Article  CAS  PubMed  Google Scholar 

  184. Morelli A, Lange M, Ertmer C, et al. Short-term effects of phenylephrine on systemic and regional hemodynamics in patients with septic shock: a crossover pilot study. Shock. 2008;29(4):446–51. doi:10.1097/shk.0b013e31815810ff.

    CAS  PubMed  Google Scholar 

  185. Fukuoka T, Nishimura M, Imanaka H, et al. Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med. 1989;17(11):1104–7.

    Article  CAS  PubMed  Google Scholar 

  186. Udy AA, Lipman J, Jarrett P, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care. 2015;19:28. doi:10.1186/s13054-015-0750-y.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev. 2001;33(2):161–235. doi:10.1081/DMR-100104402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hempel.

Ethics declarations

Funding

This work was financially supported by a research grant from Bayer Technology Services GmbH as part of a PhD thesis of Christian Radke. The research grant was received by Georg Hempel (between 2012 and 2015).

Conflict of interest

Michaela Meyer and Thomas Eissing were employed by Bayer Technology Services GmbH during the preparation of the manuscript and are potential stock holders of Bayer AG, the holding owning Bayer Technology Services GmbH. Dagmar Horn, Christian Lanckohr and Björn Ellger have no potential conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radke, C., Horn, D., Lanckohr, C. et al. Development of a Physiologically Based Pharmacokinetic Modelling Approach to Predict the Pharmacokinetics of Vancomycin in Critically Ill Septic Patients. Clin Pharmacokinet 56, 759–779 (2017). https://doi.org/10.1007/s40262-016-0475-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0475-3

Keywords

Navigation