Advertisement

BioDrugs

, Volume 32, Issue 1, pp 53–68 | Cite as

Applications of Bioengineered 3D Tissue and Tumor Organoids in Drug Development and Precision Medicine: Current and Future

  • Mahesh Devarasetty
  • Andrea R. Mazzocchi
  • Aleksander Skardal
Review Article

Abstract

Over the past decade, advances in biomedical and tissue engineering technologies, such as cell culture techniques, biomaterials, and biofabrication, have driven increasingly widespread use of three-dimensional (3D) cell culture platforms and, subsequently, the use of organoids in a variety of research endeavors. Given the 3D nature of these organoid systems, and the frequent inclusion of extracellular matrix components, these constructs typically have more physiologically accurate cell–cell and cell–matrix interactions than traditional 2D cell cultures. As a result, 3D organoids can serve as better model systems than their 2D counterparts. Moreover, as organoids can be biofabricated from highly functional human cells, they have certain advantages over animal models, being human in nature and more easily manipulated in the laboratory. In this review, we describe such organoid technologies and their deployment in drug development and precision medicine efforts. Organoid technologies are rapidly being developed for these applications and now represent a wide variety of tissue types and diseases. Evidence is emerging that organoids are poised for widespread adoption, not only in academia but also in the pharmaceutical industry and in clinical diagnostic applications, positioning them as indispensable tools in medicine.

Notes

Compliance with Ethical Standards

Conflict of interest

Mahesh Devarasetty and Andrea Mazzocchi have no conflicts of interest that are directly relevant to the content of this review. Aleksander Skardal is an inventor of several patents on organoid technologies for drug screening, disease modeling, and personalized medicine.

Funding

No sources of funding were used to conduct or prepare this review.

References

  1. 1.
    Mills M, Estes MK. Physiologically relevant human tissue models for infectious diseases. Drug Discov Today. 2016;21(9):1540–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125.PubMedCrossRefGoogle Scholar
  3. 3.
    Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 2016;21(9):1399–411.PubMedCrossRefGoogle Scholar
  4. 4.
    Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng. 2011;13:55–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today. 2008;13(1–2):1–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69–70:1–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA. 2017;114(12):E2293–302.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Zhang YS, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7(1):8837.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng. 2015;43(10):2361–73.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Purwada A, Jaiswal MK, Ahn H, Nojima T, Kitamura D, Gaharwar AK, Cerchietti L, Singh A. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials. 2015;63:24–34.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Purwada A, Singh A. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat Protoc. 2017;12(1):168–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Mazzocchi AR, Soker S, Skardal A. Biofabrication technologies for developing in vitro tumor models. In: Soker S, Skardal A, editors. Tumor organoids. Berlin: Springer Nature; 2017.Google Scholar
  14. 14.
    Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15(12):747–56.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Devarasetty M, Wang E, Soker S, Skardal A. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication. 2017;9(2):021002.PubMedCrossRefGoogle Scholar
  16. 16.
    Messner S, Agarkova I, Moritz W, Kelm JM. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol. 2013;87(1):209–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010;31(32):8494–506.PubMedCrossRefGoogle Scholar
  18. 18.
    Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, Blumling J, Wang CF, Kohane DS, Langer R. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials. 2006;27(30):5259–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schafer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, Krieg A, Stoecklein NH. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8(3):e59689.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M, Okano T, Seki M. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 2012;33(33):8304–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 2012;33(18):4565–75.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Beck JN, Singh A, Rothenberg AR, Elisseeff JH, Ewald AJ. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials. 2013;34(37):9486–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Sung JH, Esch MB, Prot JM, Long CJ, Smith A, Hickman JJ, Shuler ML. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip. 2013;13(7):1201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113(9):2020–32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    FDA, Information for Healthcare Professionals: Valdecoxib (marketed as Bextra), Author, Rockville, MD, 2005.Google Scholar
  29. 29.
    FDA, Information for Healthcare Professionals: Pemoline Tablets and Chewable Tablets (marketed as Cylert), Author, Rockville, MD, 2005.Google Scholar
  30. 30.
    Naguib M. How serious is the bronchospasm induced by rapacuronium? Anesthesiology. 2001;94(5):924–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Kahwaji R, Bevan DR, Bikhazi G, Shanks CA, Fragen RJ, Dyck JB, Angst MS, Matteo R. Dose-ranging study in younger adult and elderly patients of ORG 9487, a new, rapid-onset, short-duration muscle relaxant. Anesthes Analgesia. 1997;84(5):1011–8.CrossRefGoogle Scholar
  32. 32.
    Wight WJ, Wright PM. Pharmacokinetics and pharmacodynamics of rapacuronium bromide. Clin Pharmacokinet. 2002;41(13):1059–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26(1):120–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Institute of Medicine Committee to Review the Fialuridine Clinical. In: FJ Manning, M Swartz (eds.), Review of the Fialuridine (FIAU) Clinical Trials, National Academies Press (US). Copyright 1995 by the National Academy of Sciences. All rights reserved., Washington (DC), 1995.Google Scholar
  35. 35.
    Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A, Puigvert LF, Dankers AC, Jacobs F, Snoeys J, Sison-Young RL, Jenkins RE, Nordling A, Mkrtchian S, Park BK, Kitteringham NR, Goldring CE, Lauschke VM, Ingelman-Sundberg M. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ott LM, Ramachandran K, Stehno-Bittel L. An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov. 2017;22(5):614–25.PubMedGoogle Scholar
  37. 37.
    Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD. Characterization of a functional C3A liver spheroid model. Toxicol Res. 2016;5(4):1053–65.  https://doi.org/10.1039/c6tx00101g.CrossRefGoogle Scholar
  38. 38.
    Otsuka H, Sasaki K, Okimura S, Nagamura M, Nakasone Y. Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions. Sci Technol Adv Mater. 2013;14(6):065003.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Abu-Absi SF, Hansen LK, Hu WS. Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology. 2004;45(3):125–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–83.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Khakoo AY, Liu PP, Force T, Lopez-Berestein G, Jones LW, Schneider J, Hill J. Cardiotoxicity due to cancer therapy. Texas Heart Inst J. 2011;38(3):253–6.Google Scholar
  43. 43.
    Testai L, Cecchetti V, Sabatini S, Martelli A, Breschi MC, Calderone V. Effects of K openers on the QT prolongation induced by HERG-blocking drugs in guinea-pigs. J Pharm Pharmacol. 2010;62(7):924–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Lu J, Wei H, Wu J, Jamil MFA, Tan ML, Adenan MI, Wong P, Shim W. Evaluation of the cardiotoxicity of mitragynine and its analogues using human induced pluripotent stem cell-derived cardiomyocytes. PLoS One. 2014;9(12):e115648.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Motlagh D, Hartman TJ, Desai TA, Russell B. Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res Part A. 2003;67(1):148–57.CrossRefGoogle Scholar
  47. 47.
    Wang PY, Yu J, Lin JH, Tsai WB. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011;7(9):3285–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA. 2010;107(2):565–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Annabi N, Selimovic S, Acevedo Cox JP, Ribas J, Bakooshli MA, Heintze D, Weiss AS, Cropek D, Khademhosseini A. Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip. 2013;13(18):3569–77.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ma Z, Liu Q, Yang H, Runyan RB, Eisenberg CA, Xu M, Borg TK, Markwald R, Wang Y, Gao BZ. Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level. Light Sci Appl. 2013;2:e68.CrossRefGoogle Scholar
  51. 51.
    Tsang KM, Annabi N, Ercole F, Zhou K, Karst D, Li F, Haynes JM, Evans RA, Thissen H, Khademhosseini A, Forsythe JS. Facile one-step micropatterning using photodegradable methacrylated gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv Funct Mater. 2015;25(6):977–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Mengsteab PY, Uto K, Smith AS, Frankel S, Fisher E, Nawas Z, Macadangdang J, Ebara M, Kim DH. Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials. 2016;86:1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Salick MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials. 2014;35(15):4454–64.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Izumi-Nakaseko H, Nakamura Y, Wada T, Ando K, Kanda Y, Sekino Y, Sugiyama A. Characterization of human iPS cell-derived cardiomyocyte sheets as a model to detect drug-induced conduction disturbance. J Toxicol Sci. 2017;42(2):183–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Caspi O, Itzhaki I, Kehat I, Gepstein A, Arbel G, Huber I, Satin J, Gepstein L. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 2009;18(1):161–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD, Suter TM, Zuppinger C. Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods. 2015;21(8):852–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Devarasetty M, Forsythe S, Shupe TD, Soker S, Bishop CE, Atala A, Skardal A. Optical tracking and digital quantification of beating behavior in bioengineered human cardiac organoids. Biosensors (Basel). 2017;7(3):24.CrossRefGoogle Scholar
  58. 58.
    Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A. 2012;18(9–10):910–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One. 2011;6(10):e26397.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schwaiblmair M, Behr W, Haeckel T, Märkl B, Foerg W, Berghaus T. Drug induced interstitial lung disease. Open Respir Med J. 2012;6:63–74.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    de Lauretis A, Veeraraghavan S, Renzoni E. Review series: aspects of interstitial lung disease: connective tissue disease-associated interstitial lung disease: how does it differ from IPF? How should the clinical approach differ? Chron Respir Dis. 2011;8(1):53–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Dekali S, Gamez C, Kortulewski T, Blazy K, Rat P, Lacroix G. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep. 2014;1(Supplement C):157–71.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Parasa VR, Rahman MJ, Hoang ATN, Svensson M, Brighenti S, Lerm M. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis Mod Mechan. 2014;7(2):281–8.CrossRefGoogle Scholar
  64. 64.
    Derk R, Davidson DC, Manke A, Stueckle TA, Rojanasakul Y, Wang L. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sens Bio-sens Res. 2015;3(Supplement C):38–45.CrossRefGoogle Scholar
  65. 65.
    Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yu W, Fang X, Ewald A, Wong K, Hunt CA, Werb Z, Matthay MA, Mostov K. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol Biol Cell. 2007;18(5):1693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee H-H, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13(2):151–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. Ann Rev Pathol. 2015;10:195–262.CrossRefGoogle Scholar
  70. 70.
    Leite SB, Roosens T, El Taghdouini A, Mannaerts I, Smout AJ, Najimi M, Sokal E, Noor F, Chesne C, van Grunsven LA. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials. 2016;78(Supplement C):1–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Prestigiacomo V, Weston A, Messner S, Lampart F, Suter-Dick L. Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis. PLoS One. 2017;12(6):e0179995.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Katare RG, Ando M, Kakinuma Y, Sato T. Engineered heart tissue: a novel tool to study the ischemic changes of the heart in vitro. PLoS One. 2010;5(2):e9275.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vander Heide RS, Rim D, Hohl CM, Ganote CE. An in vitro model of myocardial ischemia utilizing isolated adult rat myocytes. J Mol Cell Cardiol. 1990;22(2):165–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Tumiati LC, Mickle DAG, Weisel RD, Williams WG, Li R-K. An in vitro model to study myocardial ischemic injury. J Tissue Cult Methods. 1994;16(1):1–9.CrossRefGoogle Scholar
  75. 75.
    Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NWM, Bijvelds MJC, Scholte BJ, Nieuwenhuis EES, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent Cornelis K, Nieuwenhuis EE, Beekman JM, Clevers H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Devarasetty M, Wang E, Soker S, Skardal A. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication. 2017;9(2):021002.PubMedCrossRefGoogle Scholar
  78. 78.
    Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release. 2014;190:82–93.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A. Organs-on-a-chip: a new tool for drug discovery. Exp Opin Drug Discov. 2014;9(4):335–52.CrossRefGoogle Scholar
  80. 80.
    Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Barrila J, Radtke AL, Crabbe A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol. 2010;8(11):791–801.PubMedCrossRefGoogle Scholar
  82. 82.
    Skardal A, Sarker SF, Crabbe A, Nickerson CA, Prestwich GD. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials. 2010;31(32):8426–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Skardal A, Devarasetty M, Soker S, Hall AR. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication. 2015;7(3):031001.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Devarasetty M, Skardal A, Cowdrick K, Marini F, Soker S. Bioengineered submucosal organoids for in vitro modeling of colorectal cancer. Tissue Eng Part A. 2017;23:1026.PubMedCrossRefGoogle Scholar
  85. 85.
    Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–24.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, Nostro C, Wang R, Muthuswamy LB, Crawford HC, Arrowsmith C, Kalloger SE, Renouf DJ, Connor AA, Cleary S, Schaeffer DF, Roehrl M, Tsao MS, Gallinger S, Keller G, Muthuswamy SK. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21(11):1364–71.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev. 2014;24:68–73.PubMedCrossRefGoogle Scholar
  90. 90.
    Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, Schrumpf E, Melum E, Karlsen TH, Bradley JA, Gelson WT, Davies S, Baker A, Kaser A, Alexander GJ, Hannan NRF, Vallier L. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015;33(8):845–52.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, Feng GS, Sheikh F, Chien S, Chen S. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA. 2016;113(8):2206–11.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater. 2015;55:87–103.PubMedCrossRefGoogle Scholar
  93. 93.
    Skardal A, Devarasetty M, Kang HW, Mead I, Bishop C, Shupe T, Lee SJ, Jackson J, Yoo J, Soker S, Atala A. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 2015;25:24–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Skardal A, Devarasetty M, Kang HW, Seol YJ, Forsythe SD, Bishop C, Shupe T, Soker S, Atala A. Bioprinting cellularized constructs using a tissue-specific hydrogel bioink. J Vis Exp. 2016;110:e53606.Google Scholar
  95. 95.
    Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep. 2015;5:8883.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465(7299):808–12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wilkinson DC, Alva-Ornelas JA, Sucre JM, Vijayaraj P, Durra A, Richardson W, Jonas SJ, Paul MK, Karumbayaram S, Dunn B, Gomperts BN. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. 2016;6:622.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Glade Bender J, Verma A, Schiffman JD. Translating genomic discoveries to the clinic in pediatric oncology. Curr Opin Pediatr. 2015;27(1):34–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Andre F, Mardis E, Salm M, Soria JC, Siu LL, Swanton C. Prioritizing targets for precision cancer medicine. Ann Oncol. 2014;25(12):2295–303.PubMedCrossRefGoogle Scholar
  102. 102.
    Roychowdhury S, Chinnaiyan AM. Translating genomics for precision cancer medicine. Annu Rev Genom Hum Genet. 2014;15:395–415.CrossRefGoogle Scholar
  103. 103.
    Hayes DF, Schott AF. Personalized medicine: genomics trials in oncology. Trans Am Clin Climatol Assoc. 2015;126:133–43.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Cantrell MA, Kuo CJ. Organoid modeling for cancer precision medicine. Genome Med. 2015;7(1):32.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, Wongvipat J, Kossai M, Ramazanoglu S, Barboza LP, Di W, Cao Z, Zhang QF, Sirota I, Ran L, MacDonald TY, Beltran H, Mosquera JM, Touijer KA, Scardino PT, Laudone VP, Curtis KR, Rathkopf DE, Morris MJ, Danila DC, Slovin SF, Solomon SB, Eastham JA, Chi P, Carver B, Rubin MA, Scher HI, Clevers H, Sawyers CL, Chen Y. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. 2015;21(5):431–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston-SalemUSA
  2. 2.Virginia Tech - Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of MedicineWinston-SalemUSA
  3. 3.Comprehensive Cancer Center at Wake Forest Baptist MedicalWinston-SalemUSA
  4. 4.Department of Cancer BiologyWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations