, Volume 32, Issue 1, pp 9–25 | Cite as

Gene Therapy for Hemophilia: Progress to Date

  • John C. Chapin
  • Paul Edward Monahan
Leading Article


Hemophilia is a congenital bleeding disorder that affects nearly half a million individuals worldwide. Joint bleeding and other co-morbidities are a significant source of debilitation for this population. Current therapies are effective but must be given lifelong at regular intervals, are costly, and are available to only about 25% of the hemophilia population living in resource-rich countries. Gene therapy for hemophilia has been in development for three decades and is now entering pivotal-stage clinical trials. While many different technology platforms exist for gene therapy, all current clinical trials for hemophilia employ adeno-associated vector (AAV)-based cell transduction. This small viral particle is capable of packaging modified F8 or F9 transgenes, can be generated robustly from cell lines, and transduces several relatively end-differentiated target tissues such as the liver with high efficiency. While pre-existing neutralizing antibodies to the AAV capsid are recognized to limit current therapy, other challenges have been identified in human studies that were not seen in preclinical studies. Both liver transaminase elevations and immune-mediated loss of transgene expression have been observed in clinical trials. Toll-like receptors, cytotoxic T cells, and other components of the immune response have been implicated in the loss of factor expression, but a full understanding of the immune response awaits clarification. Despite these challenges, many patients enrolled in gene therapy trials have attained long-term expression of factors VIII and IX. This emerging technology now represents a cure for the severe bleeding and joint damage associated with hemophilia.


Compliance with Ethical Standards


There was no funding to support this document.

Conflict of interest

JCC and PEM are both employees of Shire, PLC.


  1. 1.
    Wong T, Recht M. Current options and new developments in the treatment of haemophilia. Drugs. 2011;71(3):305–20.PubMedCrossRefGoogle Scholar
  2. 2.
    den Uijl IE, Fischer K, Van Der Bom JG, Grobbee DE, Rosendaal FR, Plug I. Analysis of low frequency bleeding data: the association of joint bleeds according to baseline FVIII activity levels. Haemophilia. 2011;17(1):41–4.CrossRefGoogle Scholar
  3. 3.
    Den Uijl IE, Mauser Bunschoten EP, Roosendaal G, Schutgens RE, Biesma DH, Grobbee DE, et al. Clinical severity of haemophilia A: does the classification of the 1950s still stand? Haemophilia. 2011;17(6):849–53.CrossRefGoogle Scholar
  4. 4.
    Löfqvist T, Nilsson IM, Berntorp E, Pettersson H. Haemophilia prophylaxis in young patients—a long-term follow-up. J Intern Med. 1997;241(5):395–400.PubMedCrossRefGoogle Scholar
  5. 5.
    Mazepa MA, Monahan PE, Baker JR, Riske BK, Soucie JM, Network UHTC. Men with severe hemophilia in the United States: birth cohort analysis of a large national database. Blood. 2016;127(24):3073–81.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Darby SC, Kan SW, Spooner RJ, Giangrande PL, Hill FG, Hay CR, et al. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood. 2007;110(3):815–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Oladapo AO, Epstein JD, Williams E, Ito D, Gringeri A, Valentino LA. Health-related quality of life assessment in haemophilia patients on prophylaxis therapy: a systematic review of results from prospective clinical trials. Haemophilia. 2015;21(5):e344–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Iorio A, Marchesini E, Marcucci M, Stobart K, Chan AK. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B. Cochrane Database Syst Rev. 2011;(9):CD003429.Google Scholar
  10. 10.
    Stonebraker JS, Brooker M, Amand RE, Farrugia A, Srivastava A. A study of reported factor VIII use around the world. Haemophilia. 2010;16(1):33–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Stonebraker JS, Bolton-Maggs PH, Brooker M, Farrugia A, Srivastava A. A study of reported factor IX use around the world. Haemophilia. 2011;17(3):446–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Powell JS, Pasi KJ, Ragni MV, Ozelo MC, Valentino LA, Mahlangu JN, et al. Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013;369(24):2313–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014;123(3):317–25.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Konkle BA, Stasyshyn O, Chowdary P, Bevan DH, Mant T, Shima M, et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood. 2015;126(9):1078–85.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. 2017;377(9):809–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Pasi KJ, Rangarajan S, Georgiev P, Mant T, Creagh MD, Lissitchkov T, et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N Engl J Med. 2017;377(9):819–28.PubMedCrossRefGoogle Scholar
  17. 17.
    Gouw SC, van der Bom JG, Marijke van den Berg H. Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study. Blood. 2007;109(11):4648–54.PubMedCrossRefGoogle Scholar
  18. 18.
    DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol. 2007;138(3):305–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Anson DS, Hock RA, Austen D, Smith KJ, Brownlee GG, Verma IM, et al. Towards gene therapy for hemophilia B. Mol Biol Med. 1987;4(1):11–20.PubMedGoogle Scholar
  20. 20.
    Xu L, Gao C, Sands MS, Cai SR, Nichols TC, Bellinger DA, et al. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B. Blood. 2003;101(10):3924–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu L, Nichols TC, Sarkar R, McCorquodale S, Bellinger DA, Ponder KP. Absence of a desmopressin response after therapeutic expression of factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proc Natl Acad Sci USA. 2005;102(17):6080–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kay MA, Rothenberg S, Landen CN, Bellinger DA, Leland F, Toman C, et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science. 1993;262(5130):117–9.PubMedCrossRefGoogle Scholar
  23. 23.
    VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, et al. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA. 1999;96(18):10379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Greengard JS, Jolly DJ. Animal testing of retroviral-mediated gene therapy for factor VIII deficiency. Thromb Haemost. 1999;82(2):555–61.PubMedGoogle Scholar
  25. 25.
    Powell JS, Ragni MV, White GC, Lusher JM, Hillman-Wiseman C, Moon TE, et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood. 2003;102(6):2038–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Mátrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vector development and applications. Mol Ther. 2010;18(3):477–90.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F, et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med. 2015;7(277):277ra28.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Suwanmanee T, Hu G, Gui T, Bartholomae CC, Kutschera I, von Kalle C, et al. Integration-deficient lentiviral vectors expressing codon-optimized R338L human FIX restore normal hemostasis in Hemophilia B mice. Mol Ther. 2014;22(3):567–74.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Matsui H, Hegadorn C, Ozelo M, Burnett E, Tuttle A, Labelle A, et al. A microRNA-regulated and GP64-pseudotyped lentiviral vector mediates stable expression of FVIII in a murine model of Hemophilia A. Mol Ther. 2011;19(4):723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kuether EL, Schroeder JA, Fahs SA, Cooley BC, Chen Y, Montgomery RR, et al. Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-factor VIII immunity. J Thromb Haemost. 2012;10(8):1570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cavazzana-Calvo M, Lagresle C, Hacein-Bey-Abina S, Fischer A. Gene therapy for severe combined immunodeficiency. Annu Rev Med. 2005;56:585–602.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt M, Hacein-Bey-Abina S, Wissler M, Carlier F, Lim A, Prinz C, et al. Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood. 2005;105(7):2699–706.PubMedCrossRefGoogle Scholar
  33. 33.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348(3):255–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR, et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther. 2000;1(6):522–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000;25(1):35–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP. Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol. 2002;20(11):1124–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood. 2002;99(2):457–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Roth DA, Tawa NE, O’Brien JM, Treco DA, Selden RF. Group FVTTS. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med. 2001;344(23):1735–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Atchinson RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149(3685):754–6.CrossRefGoogle Scholar
  40. 40.
    Melnick JL, Mayor HD, Smith KO, Rapp F. Association of 20-millimicron particles with adenoviruses. J Bacteriol. 1965;90(1):271–4.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA. 2002;99(16):10405–10.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol. 2009;83(3):1456–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA. 1990;87(6):2211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Afione SA, Conrad CK, Kearns WG, Chunduru S, Adams R, Reynolds TC, et al. In vivo model of adeno-associated virus vector persistence and rescue. J Virol. 1996;70(5):3235–41.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Schnepp BC, Jensen RL, Chen CL, Johnson PR, Clark KR. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol. 2005;79(23):14793–803.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63(4):1023–37.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gruppuso PA, Sanders JA. Regulation of liver development: implications for liver biology across the lifespan. J Mol Endocrinol. 2016;56(3):R115–25.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jacobs F, Gordts SC, Muthuramu I, De Geest B. The liver as a target organ for gene therapy: state of the art, challenges, and future perspectives. Pharmaceuticals (Basel). 2012;5(12):1372–92.CrossRefGoogle Scholar
  49. 49.
    Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Nathwani AC, Cochrane M, McIntosh J, Ng CY, Zhou J, Gray JT, et al. Enhancing transduction of the liver by adeno-associated viral vectors. Gene Ther. 2009;16(1):60–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99(18):11854–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang L, Wang H, Bell P, McCarter RJ, He J, Calcedo R, et al. Systematic evaluation of AAV vectors for liver directed gene transfer in murine models. Mol Ther. 2010;18(1):118–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther. 1998;5(1):40–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Chao H, Samulski R, Bellinger D, Monahan P, Nichols T, Walsh C. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther. 1999;6(10):1695–704.PubMedCrossRefGoogle Scholar
  56. 56.
    Scallan CD, Lillicrap D, Jiang H, Qian X, Patarroyo-White SL, Parker AE, et al. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood. 2003;102(6):2031–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 1997;16(3):270–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF, et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med. 1999;5(1):64–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA. 1999;96(7):3906–10.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther. 2000;1(2):154–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Nathwani AC, Davidoff AM, Hanawa H, Hu Y, Hoffer FA, Nikanorov A, et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood. 2002;100(5):1662–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA. 1996;93(24):14082–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hauck B, Zhao W, High K, Xiao W. Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction. J Virol. 2004;78(24):13678–86.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med. 1997;3(3):306–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Herzog RW, Fields PA, Arruda VR, Brubaker JO, Armstrong E, McClintock D, et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther. 2002;13(11):1281–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Fields PA, Arruda VR, Armstrong E, Chu K, Mingozzi F, Hagstrom JN, et al. Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9. Mol Ther. 2001;4(3):201–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24(3):257–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101(8):2963–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang L, Cao O, Swalm B, Dobrzynski E, Mingozzi F, Herzog RW. Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Ther. 2005;12(19):1453–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med. 1999;5(1):56–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Herzog RW, Mount JD, Arruda VR, High KA, Lothrop CD. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther. 2001;4(3):192–200.PubMedCrossRefGoogle Scholar
  72. 72.
    Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119(13):3038–41.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mount JD, Herzog RW, Tillson DM, Goodman SA, Robinson N, McCleland ML, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood. 2002;99(8):2670–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009;361(17):1671–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Samelson-Jones B, Finn J, Camire R, Arruda V. New hyperactive Factor IX variants bioengineered based upon biochemical studies of Factor IX Padua. Blood. 2016;128(22):1384.Google Scholar
  79. 79.
    Finn JD, Nichols TC, Svoronos N, Merricks EP, Bellenger DA, Zhou S, et al. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood. 2012;120(23):4521–3.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther. 2015;26(2):69–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Monahan P, Walsh C, Powell J, Konkle B, Josephson N, Escobar M, et al. Update on a phase 1/2 open-label trial of BAX335, an adeno-associated virus 8 (AAV8) vector-based gene therapy program for hemophilia B. J Thromb Haemost. 2015;13(Suppl. 2):1–997.Google Scholar
  82. 82.
    Herzog RW. Hemophilia gene therapy: caught between a cure and an immune response. Mol Ther. 2015;23(9):1411–2.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    George L, Giermasz A, Sullivan S, Ducore J, Rasko J, Samelson-Jones B, et al. SPK-9001: adeno-associated virus mediated gene transfer for haemophilia B achieved durable endogenous prophylaxis at levels of activity sufficient to achieve significant mean reduction in annual bleeding and infusions rates in preliminary data from an on-going phase 1/2a trial. Res Pract Thromb Haemost. 2017;1:1–1451.CrossRefGoogle Scholar
  84. 84.
    Lind P, Larsson K, Spira J, Sydow-Bäckman M, Almstedt A, Gray E, et al. Novel forms of B-domain-deleted recombinant factor VIII molecules. Construction and biochemical characterization. Eur J Biochem. 1995;232(1):19–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Pasi J, Wong W, Rangarajan S, Wilde J, Perry D, Madan B, et al. Interim results of an open-label, phase 1/2 study of BMN 270, an AAV5-FVIII gene transfer in severe hemophilia A. Haemophilia. 2016;22(S4):151–2.Google Scholar
  86. 86.
    Zolotukhin I, Markusic DM, Palaschak B, Hoffman BE, Srikanthan MA, Herzog RW. Potential for cellular stress response to hepatic factor VIII expression from AAV vector. Mol Ther Methods Clin Dev. 2016;3:16063.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530(7588):108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Murphy SL, Li H, Zhou S, Schlachterman A, High K. Prolonged susceptibility to antibody-mediated neutralization for adeno-associated vectors targeted to the liver. Mol Ther. 2008;16(1):138–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Halbert CL, Standaert TA, Wilson CB, Miller AD. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J Virol. 1998;72(12):9795–805.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang L, Calcedo R, Bell P, Lin J, Grant RL, Siegel DL, et al. Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther. 2011;22(11):1389–401.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19(3):288–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Mimuro J, Mizukami H, Shima M, Matsushita T, Taki M, Muto S, et al. The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals. J Med Virol. 2014;86(11):1990–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Stilwell JL, Samulski RJ. Adeno-associated virus vectors for therapeutic gene transfer. Biotechniques. 2003;34(1):148–50, 52, 54 passim.Google Scholar
  95. 95.
    Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996;70(5):3227–34.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Li C, He Y, Nicolson S, Hirsch M, Weinberg MS, Zhang P, et al. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. J Clin Investig. 2013;123(3):1390–401.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Monahan PE, Lothrop CD, Sun J, Hirsch ML, Kafri T, Kantor B, et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther. 2010;18(11):1907–16.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther. 2008;16(2):280–9.PubMedCrossRefGoogle Scholar
  99. 99.
    McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107(7):2653–61.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wu J, Zhao W, Zhong L, Han Z, Li B, Ma W, et al. Self-complementary recombinant adeno-associated viral vectors: packaging capacity and the role of rep proteins in vector purity. Hum Gene Ther. 2007;18(2):171–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011;20(4):681–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Foster H, Sharp PS, Athanasopoulos T, Trollet C, Graham IR, Foster K, et al. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther. 2008;16(11):1825–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang L, Morizono H, Lin J, Bell P, Jones D, McMenamin D, et al. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome. Mol Genet Metab. 2012;105(2):203–11.PubMedCrossRefGoogle Scholar
  105. 105.
    Ward NJ, Buckley SM, Waddington SN, Vandendriessche T, Chuah MK, Nathwani AC, et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood. 2011;117(3):798–807.PubMedCrossRefGoogle Scholar
  106. 106.
    Shestopal SA, Hao JJ, Karnaukhova E, Liang Y, Ovanesov MV, Lin M, et al. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost. 2017;15(4):709–20.PubMedCrossRefGoogle Scholar
  107. 107.
    Kimchi-Sarfaty C, Schiller T, Hamasaki-Katagiri N, Khan MA, Yanover C, Sauna ZE. Building better drugs: developing and regulating engineered therapeutic proteins. Trends Pharmacol Sci. 2013;34(10):534–48.PubMedCrossRefGoogle Scholar
  108. 108.
    Kuriyama S, Yoshikawa M, Ishizaka S, Tsujii T, Ikenaka K, Kagawa T, et al. A potential approach for gene therapy targeting hepatoma using a liver-specific promoter on a retroviral vector. Cell Struct Funct. 1991;16(6):503–10.PubMedCrossRefGoogle Scholar
  109. 109.
    Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet. 1998;18(2):180–3.PubMedCrossRefGoogle Scholar
  110. 110.
    Nair N, Rincon MY, Evens H, Sarcar S, Dastidar S, Samara-Kuko E, et al. Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood. 2014;123(20):3195–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Falkner F, Horling F, Lengler J, Weiller M, Mayrhofer J, Turecek M, et al. Development of a lead candidate for Shire’s AAV8-based FVIII gene therapy program BAX 888. Haemophilia. 2016;22(S4):1–152.Google Scholar
  112. 112.
    Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther. 2008;15(11):840–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Sommer JM, Smith PH, Parthasarathy S, Isaacs J, Vijay S, Kieran J, et al. Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol Ther. 2003;7(1):122–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med. 2013;5(194):194ra92.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gao K, Li M, Zhong L, Su Q, Li J, Li S, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side-effects. Mol Ther Methods Clin Dev. 2014;1(9):20139.PubMedGoogle Scholar
  117. 117.
    Pien GC, Basner-Tschakarjan E, Hui DJ, Mentlik AN, Finn JD, Hasbrouck NC, et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J Clin Investig. 2009;119(6):1688–95.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gruntman AM, Su L, Su Q, Gao G, Mueller C, Flotte TR. Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials. Hum Gene Ther Methods. 2015;26(2):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.PubMedCrossRefGoogle Scholar
  120. 120.
    Li H, Murphy SL, Giles-Davis W, Edmonson S, Xiang Z, Li Y, et al. Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther. 2007;15(4):792–800.PubMedCrossRefGoogle Scholar
  121. 121.
    Li C, Hirsch M, Asokan A, Zeithaml B, Ma H, Kafri T, et al. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo. J Virol. 2007;81(14):7540–7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang L, Figueredo J, Calcedo R, Lin J, Wilson JM. Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets. Hum Gene Ther. 2007;18(3):185–94.PubMedCrossRefGoogle Scholar
  123. 123.
    Siders WM, Shields J, Kaplan J, Lukason M, Woodworth L, Wadsworth S, et al. Cytotoxic T lymphocyte responses to transgene product, not adeno-associated viral capsid protein, limit transgene expression in mice. Hum Gene Ther. 2009;20(1):11–20.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Palaschak B, Marsic D, Herzog RW, Zolotukhin S, Markusic DM. An immune-competent murine model to study elimination of AAV-transduced hepatocytes by capsid-specific CD8(+) T cells. Mol Ther Methods Clin Dev. 2017;5:142–52.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13(1):114–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Mosaheb MM, Reiser ML, Wetzler LM. Toll-like receptor ligand-based vaccine adjuvants require intact MyD88 signaling in antigen-presenting cells for germinal center formation and antibody production. Front Immunol. 2017;8:225.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Somanathan S, Breous E, Bell P, Wilson JM. AAV vectors avoid inflammatory signals necessary to render transduced hepatocyte targets for destructive T cells. Mol Ther. 2010;18(5):977–82.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Investig. 2009;119(8):2388–98.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wu TL, Li H, Faust SM, Chi E, Zhou S, Wright F, et al. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors’ genome. Mol Ther. 2014;22(1):42–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Investig. 2013;123(7):2994–3001.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Veron P, Leborgne C, Monteilhet V, Boutin S, Martin S, Moullier P, et al. Humoral and cellular capsid-specific immune responses to adeno-associated virus type 1 in randomized healthy donors. J Immunol. 2012;188(12):6418–24.PubMedCrossRefGoogle Scholar
  133. 133.
    Parzych EM, Li H, Yin X, Liu Q, Wu TL, Podsakoff GM, et al. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans. Hum Gene Ther. 2013;24(4):431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sabatino DE, Mingozzi F, Hui DJ, Chen H, Colosi P, Ertl HC, et al. Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther. 2005;12(6):1023–33.PubMedCrossRefGoogle Scholar
  135. 135.
    Hui DJ, Edmonson SC, Podsakoff GM, Pien GC, Ivanciu L, Camire RM, et al. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Mol Ther Methods Clin Dev. 2015;2:15029.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Li H, Lasaro MO, Jia B, Lin SW, Haut LH, High KA, et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther. 2011;19(11):2021–30.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22.PubMedCrossRefGoogle Scholar
  138. 138.
    Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125(10):1553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y, et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Investig. 2003;111(9):1347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Ziegler RJ, Cherry M, Barbon CM, Li C, Bercury SD, Armentano D, et al. Correction of the biochemical and functional deficits in Fabry mice following AAV8-mediated hepatic expression of α-galactosidase A. Mol Ther. 2007;15(3):492–500.CrossRefGoogle Scholar
  141. 141.
    Sun B, Kulis MD, Young SP, Hobeika AC, Li S, Bird A, et al. Immunomodulatory gene therapy prevents antibody formation and lethal hypersensitivity reactions in murine Pompe disease. Mol Ther. 2010;18(2):353–60.PubMedCrossRefGoogle Scholar
  142. 142.
    Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE, et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood. 2007;110(7):2334–41.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Cooper M, Nayak S, Hoffman BE, Terhorst C, Cao O, Herzog RW. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum Gene Ther. 2009;20(7):767–76.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology. 2009;50(2):612–21.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol. 2001;75(15):6969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, et al. The kinetics of rAAV integration in the liver. Nat Genet. 1998;19(1):13–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet. 2003;34(3):297–302.PubMedCrossRefGoogle Scholar
  148. 148.
    Donsante A, Vogler C, Muzyczka N, Crawford JM, Barker J, Flotte T, et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther. 2001;8(17):1343–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science. 2007;317(5837):477.PubMedCrossRefGoogle Scholar
  150. 150.
    Zhong L, Malani N, Li M, Brady T, Xie J, Bell P, et al. Recombinant adeno-associated virus integration sites in murine liver after ornithine transcarbamylase gene correction. Hum Gene Ther. 2013;24(5):520–5.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Investig. 2015;125(2):870–80.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bell P, Wang L, Lebherz C, Flieder DB, Bove MS, Wu D, et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther. 2005;12(2):299–306.PubMedCrossRefGoogle Scholar
  153. 153.
    Li H, Malani N, Hamilton SR, Schlachterman A, Bussadori G, Edmonson SE, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 2011;117(12):3311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93.PubMedCrossRefGoogle Scholar
  155. 155.
    Büning H, Schmidt M. Adeno-associated vector toxicity-to be or not to be? Mol Ther. 2015;23(11):1673–5.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Nault JC, Mami I, La Bella T, Datta S, Imbeaud S, Franconi A, et al. Wild-type AAV insertions in hepatocellular carcinoma do not inform debate over genotoxicity risk of vectorized AAV. Mol Ther. 2016;24(4):660–1.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.PubMedCrossRefGoogle Scholar
  158. 158.
    Lu DR, Zhou JM, Zheng B, Qiu XF, Xue JL, Wang JM, et al. Stage I clinical trial of gene therapy for hemophilia B. Sci China B. 1993;36(11):1342–51.PubMedGoogle Scholar
  159. 159.
    Zhang WW, Josephs SF, Zhou J, Fang X, Alemany R, Balagué C, et al. Development and application of a minimal-adenoviral vector system for gene therapy of hemophilia A. Thromb Haemost. 1999;82(2):562–71.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.ShireCambridgeUSA

Personalised recommendations