Skip to main content
Log in

Calcium Channel Blockers in Acute Care: The Links and Missing Links Between Hemodynamic Effects and Outcome Evidence

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Calcium channel blockers (CCBs) exert profound hemodynamic effects via blockage of calcium flux through voltage-gated calcium channels. CCBs are widely used in acute care to treat concerning, debilitating, or life-threatening hemodynamic changes in many patients. The overall literature suggests that, for systemic hemodynamics, although CCBs decrease blood pressure, they normally increase cardiac output; for regional hemodynamics, although they impair pressure autoregulation, they normally increase organ blood flow and tissue oxygenation. In acute care, CCBs exert therapeutic efficacy or improve outcomes in patients with aneurysmal subarachnoid hemorrhage, acute myocardial infarction and unstable angina, hypertensive crisis, perioperative hypertension, and atrial tachyarrhythmia. However, despite the clear links, there are missing links between the known hemodynamic effects and the reported outcome evidence, suggesting that further studies are needed for clarification. In this narrative review, we aim to discuss the hemodynamic effects and outcome evidence for CCBs, the links and missing links between these two domains, and the directions that merit future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Godfraind T. Discovery and development of calcium channel blockers. Front Pharmacol. 2017;8:286.

    PubMed  PubMed Central  Google Scholar 

  2. Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med. 1999;341(19):1447–57.

    CAS  PubMed  Google Scholar 

  3. Meng L, Yu W, Wang T, Zhang L, Heerdt PM, Gelb AW. Blood pressure targets in perioperative care: provisional considerations based on a comprehensive literature review. Hypertension. 2018;72(4):806–17.

    CAS  PubMed  Google Scholar 

  4. Kizer JR, Kimmel SE. Epidemiologic review of the calcium channel blocker drugs: an up-to-date perspective on the proposed hazards. JAMA Intern Med. 2001;161(9):1145–58.

    CAS  Google Scholar 

  5. Opie LH, Schall R. Evidence-based evaluation of calcium channel blockers for hypertension: equality of mortality and cardiovascular risk relative to conventional therapy. J Am Coll Cardiol. 2002;39(2):315–22.

    CAS  PubMed  Google Scholar 

  6. Costanzo P, Perrone-Filardi P, Petretta M, Marciano C, Vassallo E, Gargiulo P, et al. Calcium channel blockers and cardiovascular outcomes: a meta-analysis of 175 634 patients. LWW. 2009.

  7. Aronson S, Dyke CM, Stierer KA, Levy JH, Cheung AT, Lumb PD, et al. The ECLIPSE trials: comparative studies of clevidipine to nitroglycerin, sodium nitroprusside, and nicardipine for acute hypertension treatment in cardiac surgery patients. Anesth Analg. 2008;107(4):1110–21.

    CAS  PubMed  Google Scholar 

  8. Henry PD. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am J Cardiol. 1980;46(6):1047–58.

    CAS  PubMed  Google Scholar 

  9. Millard RW, Lathrop DA, Grupp G, Ashraf M, Grupp IL, Schwartz A. Differential cardiovascular effects of calcium channel blocking agents: potential mechanisms. Am J Cardiol. 1982;49(3):499–506.

    CAS  PubMed  Google Scholar 

  10. Nakaya H, Schwartz A, Millard RW. Reflex chronotropic and inotropic effects of calcium channel-blocking agents in conscious dogs. Diltiazem, verapamil, and nifedipine compared. Circ Res. 1983;52(3):302–11.

  11. Angus J, Richmond D, Dhumma-Upakorn P, Cobbin L, Goodman A. Cardiovascular action of verapamil in the dog with particular reference to myocardial contractility and atrioventricular conduction. Cardiovasc Res. 1976;10(6):623–32.

    CAS  PubMed  Google Scholar 

  12. Sugimoto T, Ishikawa T, Kaseno K, Nakase Si. Electrophysiologic effects of diltiazem, a calcium antagonist, in patients with impaired sinus or atrioventricular node function. Angiology. 1980;31(10):700–9.

  13. Bongrani S, Razzetti R, Schiantarelli P. Cardiovascular effects of nicardipine in anesthetized open-chest dogs in the absence and presence of beta-adrenergic receptor blockade: a comparison with nifedipine and verapamil. J Cardiovasc Pharmacol. 1985;7(5):899–905.

    CAS  PubMed  Google Scholar 

  14. Schulte K-l, Meyer-Sabellek WA, Haertenberger A, Thiede H-m, Roecker L, Distler A, et al. Antihypertensive and metabolic effects of diltiazem and nifedipine. Hypertension. 1986;8(10):859–65.

  15. Serruys PW, Hooghoudt T, Reiber J, Slager C, Brower R, Hugenholtz P. Influence of intracoronary nifedipine on left ventricular function, coronary vasomotility, and myocardial oxygen consumption. Heart. 1983;49(5):427–41.

    CAS  Google Scholar 

  16. Hess W, Schulte-Sasse U, Tarnow J. Nifedipine versus nitroprusside for controlling hypertensive episodes during coronary artery bypass surgery. Eur Heart J. 1984;5(2):140–5.

    CAS  PubMed  Google Scholar 

  17. Frishman WH, Charlap S, Kimmel B, Goldberger J, Phillippides G, Klein N. Calcium-channel blockers for combined angina pectoris and systemic hypertension. Am J Cardiol. 1986;57(7):D22–D29.

    Google Scholar 

  18. Nayler WG, Szeto J, Berry D. Effect of verapamil on contractility, oxygen utilization, and calcium exchangeability in mammalian heart muscle. Cardiovasc Res. 1972;6(2):120–8.

    CAS  PubMed  Google Scholar 

  19. Kline JA, Raymond RM, D. Leonova E, Williams TC, Watts JA. Insulin improves heart function and metabolism during non-ischemic cardiogenic shock in awake canines. Cardiovasc Res. 1997;34(2):289–98.

  20. Clozel J, Theroux P, Bourassa MG. Effects of diltiazem on experimental myocardial ischemia and on left ventricular performance. Circ Res. 1983;52(2 Pt 2):I120–I128128.

    CAS  PubMed  Google Scholar 

  21. Stone PH, Antman EM, Muller JE, Braunwald E. Calcium channel blocking agents in the treatment of cardiovascular disorders. Part II: Hemodynamic effects and clinical applications. Ann Intern Med. 1980;93(6):886–904.

  22. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17(1):149–66.

    CAS  PubMed  Google Scholar 

  23. Low RI, Takeda P, Mason DT, DeMaria AN. The effects of calcium channel blocking agents on cardiovascular function. Am J Cardiol. 1982;49(3):547–53.

    CAS  PubMed  Google Scholar 

  24. Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers: an update. Am J Med. 2004;116(1):35–433.

    CAS  PubMed  Google Scholar 

  25. Leonetti G, Cuspidi C, Sampieri L, Terzoli L, Zanchetti A. Comparison of cardiovascular, renal, and humoral effects of acute administration of two calcium channel blockers in normotensive and hypertensive subjects. J Cardiovasc Pharmacol. 1982;4:S319–S324324.

    PubMed  Google Scholar 

  26. Kailasam MT, Parmer RJ, Cervenka JH, Wu RA, Ziegler MG, Kennedy BP, et al. Divergent effects of dihydropyridine and phenylalkylamine calcium channel antagonist classes on autonomic function in human hypertension. Hypertension. 1995;26(1):143–9.

    CAS  PubMed  Google Scholar 

  27. Kusukawa R, Kinoshita M, Shimono Y, Tomonaga G, Hoshino T. Haemodynamic effects of a new anti-anginal drug, diltiazem hydrochloride. Arzneimittelforschung. 1977;27(4):878–83.

    CAS  PubMed  Google Scholar 

  28. Walsh RA, Badke FR, O'Rourke RA. Differential effects of systemic and intracoronary calcium channel blocking agents on global and regional left ventricular function in conscious dogs. Am Heart J. 1981;102(3):341–50.

    CAS  PubMed  Google Scholar 

  29. Mangiardi LM, Hariman RJ, McAllister R Jr, Bhargava V, Surawicz B, Shabetai R. Electrophysiologic and hemodynamic effects of verapamin. Correlation with plasma drug concentrations. Circulation. 1978;57(2):366–72.

    CAS  PubMed  Google Scholar 

  30. Joshi S, Young WL, Duong H, Aagaard BA, Ostapkovich ND, Connolly ES, et al. Intracarotid nitroprusside does not augment cerebral blood flow in human subjects. Anesthesiology. 2002;96(1):60–6.

  31. Parodi O, Neglia D, Palombo C, Sambuceti G, Giorgetti A, Marabotti C, et al. Comparative effects of enalapril and verapamil on myocardial blood flow in systemic hypertension. Circulation. 1997;96(3):864–73.

    CAS  PubMed  Google Scholar 

  32. Meredith P, Elliott H, Pasanisi F, Kelman A, Sumner D, Reid J. Verapamil pharmacokinetics and apparent hepatic and renal blood flow. Br J Clin Pharmacol. 1985;20(2):101–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dinç H, Kaplcloglu S, Cihanyurdu N, Çan G, Ünal M, Topkaya L, et al. Effect of verapamil on portal and splanchnic hemodynamics in patients with advanced posthepatitic cirrhosis using duplex Doppler ultrasound. Eur J Radiol. 1996;23(2):97–101.

    PubMed  Google Scholar 

  34. Thuillez C, Duhaze P, Fournier C, Lapierre V, Giudicelli JF. Arterial and venous effects of verapamil in normal volunteers. Fundam Clin Pharmacol. 1987;1(1):35–44.

    CAS  PubMed  Google Scholar 

  35. Hof RP. Calcium antagonist and the peripheral circulation: differences and similarities between PY 108–068, nicardipine, verapamil and diltiazem. Br J Pharmacol. 1983;78(2):375–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hollenberg NK. Vasodilators, antihypertensive therapy and the kidney. Am J Cardiol. 1987;60(17):57–60.

    Google Scholar 

  37. Chelly JE, Rogers K, Hysing ES, Taylor A, Hartley C, Merin RG. Cardiovascular effects of and interaction between calcium blocking drugs and anesthetics in chronically instrumented dogs. I. Verapamil and halothane. Anesthesiology. 1986;64(5):560–7.

    CAS  PubMed  Google Scholar 

  38. Abe K, Iwanaga H, Inada E. Effect of nicardipine and diltiazem on internal carotid artery blood flow velocity and local cerebral blood flow during cerebral aneurysm surgery for subarachnoid hemorrhage. J Clin Anesth. 1994;6(2):99–105.

    CAS  PubMed  Google Scholar 

  39. Meng L, Wang Y, Zhang L, McDonagh DL. Heterogeneity and variability in pressure autoregulation of organ blood flow: lessons learned over 100+ years. Crit Care Med. 2018.

  40. Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122(1):196–205.

  41. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123(5):1198–208.

    PubMed  Google Scholar 

  42. Jones CJ, Kuo L, Davis MJ, Chilian WM. Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res. 1995;29(5):585–96.

    CAS  PubMed  Google Scholar 

  43. Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res. 2012;49(5):375–89.

    PubMed  PubMed Central  Google Scholar 

  44. Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, et al. Dominant role of smooth muscle L‐type calcium channel Cav1. 2 for blood pressure regulation. EMBO J. 2003;22(22):6027–34.

  45. Wesselman JP, VanBavel E, Pfaffendorf M, Spaan JA. Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries. J Vasc Res. 1996;33(1):32–41.

    CAS  PubMed  Google Scholar 

  46. Tan CO, Hamner J, Taylor JA. The role of myogenic mechanisms in human cerebrovascular regulation. J Physiol. 2013;591(20):5095–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nelson M, Patlak J, Worley J, Standen N. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol Cell Physiol. 1990;259(1):C3–C18.

    CAS  Google Scholar 

  48. Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol. 1998;508(1):199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lagaud G, Gaudreault N, Moore E, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002;283(6):H2187–H21952195.

    CAS  PubMed  Google Scholar 

  50. Jensen LJ, Salomonsson M, Jensen BL, Holstein-Rathlou NH. Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels. Br J Pharmacol. 2004;142(4):709–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Griffin KA, Hacioglu R, Abu-Amarah I, Loutzenhiser R, Williamson GA, Bidani AK. Effects of calcium channel blockers on “dynamic” and “steady-state step” renal autoregulation. Am J Physiol Renal Physiol. 2004;286(6):F1136–F1143143.

    CAS  PubMed  Google Scholar 

  52. Casellas D, Moore LC. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am J Physiol Renal Physiol. 1990;258(3):F660–F66969.

    CAS  Google Scholar 

  53. Ogawa N. Effect of nicardipine on the relationship of renal blood flow and of renal vascular resistance to perfusion pressure in dog kidney. J Pharm Pharmacol. 1990;42(2):138–40.

    CAS  PubMed  Google Scholar 

  54. Navar LG, Champion WJ, Thomas CE. Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin-converting enzyme inhibition in dogs. Circ Res. 1986;58(6):874–81.

    CAS  PubMed  Google Scholar 

  55. Harris R, Branston N, Symon L, Bayhan M, Watson A. The effects of a calcium antagonist, nimodipine, upon physiological responses of the cerebral vasculature and its possible influence upon focal cerebral ischaemia. Stroke. 1982;13(6):759–66.

    CAS  PubMed  Google Scholar 

  56. Endoh H, Honda T, Komura N, Shibue C, Watanabe I, Shimoji K. The effects of nicardipine on dynamic cerebral autoregulation in patients anesthetized with propofol and fentanyl. Anesth Analg. 2000;91(3):642–6.

    CAS  PubMed  Google Scholar 

  57. Endoh H, Honda T, Ohashi S, Hida S, Shibue C, Komura N. The influence of nicardipine-, nitroglycerin-, and prostaglandin E1-induced hypotension on cerebral pressure autoregulation in adult patients during propofol-fentanyl anesthesia. Anesth Analg. 2002;94(1):169–73.

    CAS  PubMed  Google Scholar 

  58. Ogawa N, Yokota S, Ono H. Different interaction of bepridil and diltiazem with BAY K 8644 in the abolition of autoregulation of renal blood flow. J Cardiovasc Pharmacol. 1988;11(2):147–50.

    CAS  PubMed  Google Scholar 

  59. Ogawa N, Ono H. Different effects of various vasodilators on autoregulation of renal blood flow in anesthetized dogs. Jpn J Pharmacol. 1986;41(3):299–306.

    CAS  PubMed  Google Scholar 

  60. Yue W, Kimura S, Fujisawa Y, Tian R, Li F, Rahman M, et al. Benidipine dilates both pre-and post-glomerular arteriole in the canine kidney. Hypertens Res. 2001;24(4):429–36.

    CAS  PubMed  Google Scholar 

  61. Kloke HJ, Branten AJ, Huysmans FT, Wetzels JF. Antihypertensive treatment of patients with proteinuric renal diseases: risks or benefits of calcium channel blockers? Kidney Int. 1998;53(6):1559–733.

    CAS  PubMed  Google Scholar 

  62. Carmines PK, Navar LG. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Am J Physiol Renal Physiol. 1989;256(6):F1015–F10201020.

    CAS  Google Scholar 

  63. Pearce WJ, Bevan JA. Diltiazem and autoregulation of canine cerebral blood flow. J Pharmacol Exp Ther. 1987;242(3):812–7.

    CAS  PubMed  Google Scholar 

  64. Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, et al. Contribution of voltage-dependent K+ and Ca 2+ channels to coronary pressure-flow autoregulation. Basic Res Cardiol. 2012;107(3):264.

    PubMed  PubMed Central  Google Scholar 

  65. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37.

    PubMed  PubMed Central  Google Scholar 

  66. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    PubMed  Google Scholar 

  67. Dorhout Mees SM, Rinkel GJ, Feigin VL, Algra A, van den Bergh WM, Vermeulen M, et al. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2007; 18(3):Cd000277.

  68. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43(6):1711–37.

    PubMed  Google Scholar 

  69. Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F, et al. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg. 1988;68(4):505–17.

  70. Philippon J, Grob R, Dagreou F, Guggiari M, Rivierez M, Viars P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir (Wien). 1986;82(3–4):110–4.

  71. Neil-Dwyer G, Mee E, Dorrance D, Lowe D. Early intervention with nimodipine in subarachnoid haemorrhage. Eur Heart J. 1987;8 Suppl K:41–7.

  72. Mee E, Dorrance D, Lowe D, Neil-Dwyer G. Controlled study of nimodipine in aneurysm patients treated early after subarachnoid hemorrhage. Neurosurgery. 1988;22(3):484–91.

    CAS  PubMed  Google Scholar 

  73. Gelmers H. Calcium-channel blockers: effects on cerebral blood flow and potential uses for acute stroke. Am J Cardiol. 1985;55(3):B144–B148148.

    Google Scholar 

  74. Martinez-Vila E, Guillen F, Villanueva JA, Matias-Guiu J, Bigorra J, Gil P, et al. Placebo-controlled trial of nimodipine in the treatment of acute ischemic cerebral infarction. Stroke. 1990;21(7):1023–8.

    CAS  PubMed  Google Scholar 

  75. Horn J, De Haan R, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke. 2001;32(2):461–5.

    CAS  PubMed  Google Scholar 

  76. Yamamoto S, Teng W, Kakiuchi T, Tsukada H. Disturbance of cerebral blood flow autoregulation in hypertension is attributable to ischaemia following subarachnoid haemorrhage in rats: a PET study. Acta Neurochir (Wien). 1999;141(11):1213–9.

    CAS  Google Scholar 

  77. Yamamoto S, Nishizawa S, Tsukada H, Kakiuchi T, Yokoyama T, Ryu H, et al. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures. Brain Res. 1998;782(1–2):194–201.

    CAS  PubMed  Google Scholar 

  78. Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38(3):981–6.

    PubMed  Google Scholar 

  79. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(8):2097–101.

    PubMed  Google Scholar 

  80. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2012;43(12):3230–7.

    PubMed  Google Scholar 

  81. Rasulo FA, Girardini A, Lavinio A, De Peri E, Stefini R, Cenzato M, et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J Neurosurg Anesthesiol. 2012;24(1):3–8.

    PubMed  Google Scholar 

  82. Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.

    PubMed  Google Scholar 

  83. Otite F, Mink S, Tan CO, Puri A, Zamani AA, Mehregan A, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677–82.

    PubMed  PubMed Central  Google Scholar 

  84. Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care. 2014;18(2):R51.

    PubMed  PubMed Central  Google Scholar 

  85. Calviere L, Nasr N, Arnaud C, Czosnyka M, Viguier A, Tissot B, et al. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment. Neurocrit Care. 2015;23(2):253–8.

    PubMed  Google Scholar 

  86. Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med. 2001;29(1):158–63.

    CAS  PubMed  Google Scholar 

  87. Reinhard M, Neunhoeffer F, Gerds TA, Niesen WD, Buttler KJ, Timmer J, et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010;36(2):264–71.

    PubMed  Google Scholar 

  88. Barth M, Moratin B, Dostal M, Kalenka A, Scharf J, Schmieder K. Correlation of clinical outcome and angiographic vasospasm with the dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2012;114:157–60.

    PubMed  Google Scholar 

  89. Oeinck M, Neunhoeffer F, Buttler KJ, Meckel S, Schmidt B, Czosnyka M, et al. Dynamic cerebral autoregulation in acute intracerebral hemorrhage. Stroke. 2013;44(10):2722–8.

    PubMed  Google Scholar 

  90. Fontana J, Moratin J, Ehrlich G, Scharf J, Weiss C, Schmieder K, et al. Dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage and its relation to angiographic vasospasm and clinical outcome. Neurocrit Care. 2015;23(3):355–63.

    PubMed  Google Scholar 

  91. Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, et al. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86(21):1950–6.

    PubMed  PubMed Central  Google Scholar 

  92. Hauerberg J, Rasmussen G, Juhler M, Gjerris F. The effect of nimodipine on autoregulation of cerebral blood flow after subarachnoid haemorrhage in rat. Acta Neurochir (Wien). 1995;132(1–3):98–103.

    CAS  Google Scholar 

  93. Svendgaard N-A, Brismar J, Delgado T, Egund N, Owman C, Rodacki M, et al. Late cerebral arterial spasm: the cerebrovascular response to hypercapnia, induced hypertension and the effect of nimodipine on blood flow autoregulation in experimental subarachnoid hemorrhage in primates. Gen Pharmacol Vasc Syst. 1983;14(1):167–72.

    CAS  Google Scholar 

  94. Sahlin C, Brismar J, Delgado T, Owman C, Salford LG, Svendgaard N-A. Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid hemorrhage in baboons, and treatment with a calcium antagonist. Brain Res. 1987;403(2):313–32.

    CAS  PubMed  Google Scholar 

  95. Rasmussen G, Bergholdt B, Dalh B, Sunde N, Cold G, Voldby B. Effect of nimodipine on cerebral blood flow and cerebrovascular reactivity after subarachnoid haemorrhage. Acta Neurol Scand. 1999;99(3):182–6.

    CAS  PubMed  Google Scholar 

  96. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63.

    CAS  PubMed  Google Scholar 

  97. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA. 2007;297(2):177–86.

    CAS  PubMed  Google Scholar 

  98. Held PH, Yusuf S, Furberg CD. Calcium channel blockers in acute myocardial infarction and unstable angina: an overview. BMJ. 1989;299(6709):1187–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139–e228.

    PubMed  Google Scholar 

  100. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol. 2007;50(7):e1–e157.

    PubMed  Google Scholar 

  101. Gradman AH, Basile JN, Carter BL, Bakris GL, Group ASoHW. Combination therapy in hypertension. J Am Soc Hypertens. 2010;4(2):90–8.

  102. Chew CY, Brown BG, Singh BN, Wong MM, Pierce C, Petersen R. Effects of verapamil on coronary hemodynamic function and vasomobility relative to its mechanism of antianginal action. Am J Cardiol. 1983;51(5):699–705.

    CAS  PubMed  Google Scholar 

  103. Hess OM, Nonogi H, Bortone A, Gage JE, Grimm J, Krayenbuehl HP. Diltiazem alone and combined with nitroglycerin: effect on normal and diseased human coronary arteries. Eur Heart J. 1989;10 Suppl F:142–6.

  104. Rodriguez MA, Kumar SK, De Caro M. Hypertensive crisis. Cardiol Rev. 2010;18(2):102–7.

    PubMed  Google Scholar 

  105. Van den Born B, Beutler J, Gaillard C, de Gooijer A, van den Meiracker A, Kroon A. Dutch guideline for the management of hypertensive crisis—2010 revision. Neth J Med. 2011;69(5):248–55.

    PubMed  Google Scholar 

  106. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127–e248.

    PubMed  Google Scholar 

  107. Varon J. Treatment of acute severe hypertension: current and newer agents. Drugs. 2008;68(3):283–97.

    CAS  PubMed  Google Scholar 

  108. Peacock F, Amin A, Granger CB, Pollack CV Jr, Levy P, Nowak R, et al. Hypertensive heart failure: patient characteristics, treatment, and outcomes. Am J Emerg Med. 2011;29(8):855–62.

    PubMed  Google Scholar 

  109. Peacock WF IV, Hilleman DE, Levy PD, Rhoney DH, Varon J. A systematic review of nicardipine vs labetalol for the management of hypertensive crises. Am J Emerg Med. 2012;30(6):981–93.

    PubMed  Google Scholar 

  110. Peacock WF, Varon J, Baumann BM, Borczuk P, Cannon CM, Chandra A, et al. CLUE: a randomized comparative effectiveness trial of IV nicardipine versus labetalol use in the emergency department. Crit Care. 2011;15(3):R157.

    PubMed  PubMed Central  Google Scholar 

  111. Varon J, Soto-Ruiz KM, Baumann BM, Borczuk P, Cannon CM, Chandra A, et al. The management of acute hypertension in patients with renal dysfunction: labetalol or nicardipine? Postgrad Med. 2014;126(4):124–30.

    PubMed  Google Scholar 

  112. Cannon CM, Levy P, Baumann BM, Borczuk P, Chandra A, Cline DM, et al. Intravenous nicardipine and labetalol use in hypertensive patients with signs or symptoms suggestive of end-organ damage in the emergency department: a subgroup analysis of the CLUE trial. BMJ Open. 2013;3(3):e002338.

    PubMed  PubMed Central  Google Scholar 

  113. Malesker MA, Hilleman DE. Intravenous labetalol compared with intravenous nicardipine in the management of hypertension in critically ill patients. J Crit Care. 2012;27(5):528.e7–528.e14.

  114. Belfort MA, Saade GR, Moise KJ, Cruz A, Adam K, Kramer W, et al. Nimodipine in the management of preeclampsia: maternal and fetal effects. Am J Obstet Gynecol. 1994;171(2):417–24.

    CAS  PubMed  Google Scholar 

  115. Easterling T, Mundle S, Bracken H, Parvekar S, Mool S, Magee LA, et al. Oral antihypertensive regimens (nifedipine retard, labetalol, and methyldopa) for management of severe hypertension in pregnancy: an open-label, randomised controlled trial. Lancet. 2019;394(10203):1011–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reisin E, Huth MM, Nguyen BP, Weed SG, Gonzalez FM. Intravenous fenoldopam versus sodium nitroprusside in patients with severe hypertension. Hypertension. 1990;15(2 Suppl):I59.

    CAS  PubMed  Google Scholar 

  117. Zhang L, Dai F, Brackett A, Ai Y, Meng L. Association of conflicts of interest with the results and conclusions of goal-directed hemodynamic therapy research: a systematic review with meta-analysis. Intensive Care Med. 2018;44(10):1638–56.

    PubMed  Google Scholar 

  118. Suzuki S, Ohtsuka S, Ishikawa K, Yamaguchi I. Effects of nicardipine on coronary, vertebral and renal arterial flows in patients with essential hypertension. Hypertens Res. 2003;26(3):193–9.

    CAS  PubMed  Google Scholar 

  119. Leslie J, Brister N, Levy J, Yared J, Marty A, Martin H, et al. Treatment of postoperative hypertension after coronary artery bypass surgery. Double-blind comparison of intravenous isradipine and sodium nitroprusside. Circulation. 1994;90(5 Pt 2):II256–61.

  120. David D, Dubois C, Loria Y. Comparison of nicardipine and sodium nitroprusside in the treatment of paroxysmal hypertension following aortocoronary bypass surgery. J Cardiothorac Vasc Anesth. 1991;5(4):357–61.

    CAS  PubMed  Google Scholar 

  121. Bebawy JF, Houston CC, Kosky JL, Badri AM, Hemmer LB, Moreland NC, et al. Nicardipine is superior to esmolol for the management of postcraniotomy emergence hypertension: a randomized open-label study. Anesth Analg. 2015;120(1):186–92.

    CAS  PubMed  Google Scholar 

  122. Kross RA, Ferri E, Leung D, Pratila M, Broad C, Veronesi M, et al. A comparative study between a calcium channel blocker (nicardipine) and a combined α-β-blocker (labetalol) for the control of emergence hypertension during craniotomy for tumor surgery. Anesth Analg. 2000;91(4):904–9.

    CAS  PubMed  Google Scholar 

  123. Cottrell J, Patel K, Turndorf H, Ransohoff J. Intracranial pressure changes induced by sodium nitroprusside in patients with intracranial mass lesions. Surv Anesthesiol. 1979;23(3):157.

    Google Scholar 

  124. Singbartl G, Metzger G. Urapidil-induced increase of the intracranial pressure in head-trauma patients. Intensive Care Med. 1990;16(4):272–4.

    CAS  PubMed  Google Scholar 

  125. Levy JH. Management of systemic and pulmonary hypertension. Tex Heart Inst J. 2005;32(4):467–71.

    PubMed  PubMed Central  Google Scholar 

  126. Thakali KM, Kharade SV, Sonkusare SK, Rhee SW, Stimers JR, Rusch NJ. Intracellular Ca2+ silences L-type Ca2+ channels in mesenteric veins: mechanism of venous smooth muscle resistance to calcium channel blockers. Circ Res. 2010;106(4):739–47.

    CAS  PubMed  Google Scholar 

  127. Sedrakyan A, Treasure T, Browne J, Krumholz H, Sharpin C, van der Meulen J. Pharmacologic prophylaxis for postoperative atrial tachyarrhythmia in general thoracic surgery: evidence from randomized clinical trials. J Thorac Cardiovasc Surg. 2005;129(5):997–1005.

    CAS  PubMed  Google Scholar 

  128. Singh A, Mehta Y. Heart failure with preserved ejection fraction (HFpEF): Implications for the anesthesiologists. J Anaesthesiol Clin Pharmacol. 2018;34(2):161.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2013;62(16):1495–539.

    Google Scholar 

  130. Pedrinelli R, Dell'Omo G, Mariani M. Calcium channel blockers, postural vasoconstriction and dependent oedema in essential hypertension. J Hum Hypertens. 2001;15(7):455–61.

    CAS  PubMed  Google Scholar 

  131. Psaty BM, Heckbert SR, Koepsell TD, Siscovick DS, Raghunathan TE, Weiss NS, et al. The risk of myocardial infarction associated with antihypertensive drug therapies. JAMA. 1995;274(8):620–5.

    CAS  PubMed  Google Scholar 

  132. Wassertheil-Smoller S, Psaty B, Greenland P, Oberman A, Kotchen T, Mouton C, et al. Association between cardiovascular outcomes and antihypertensive drug treatment in older women. JAMA. 2004;292(23):2849–59.

    CAS  PubMed  Google Scholar 

  133. Boger-Megiddo I, Heckbert SR, Weiss NS, McKnight B, Furberg CD, Wiggins KL, et al. Myocardial infarction and stroke associated with diuretic based two drug antihypertensive regimens: population based case-control study. BMJ. 2010;340:c103.

    PubMed  PubMed Central  Google Scholar 

  134. Grossman E, Messerli FH, Grodzicki T, Kowey P. Should a moratorium be placed on sublingual nifedipine capsules given for hypertensive emergencies and pseudoemergencies? JAMA. 1996;276(16):1328–31.

    CAS  PubMed  Google Scholar 

  135. Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ. Invited review: arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity. J Appl Physiol. 2001;91(2):973–83.

    CAS  PubMed  Google Scholar 

  136. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, et al. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol. 2001;280(4):H1427–H14331433.

    CAS  PubMed  Google Scholar 

  137. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992;256(5056):532–5.

    CAS  PubMed  Google Scholar 

  138. Cai H, Yao H, Ibayashi S, Takaba H, Fujishima M. Amlodipine, a Ca2+ channel antagonist, modifies cerebral blood flow autoregulation in hypertensive rats. Eur J Pharmacol. 1996;313(1–2):103–6.

    CAS  PubMed  Google Scholar 

  139. Ikeda J-i, Yao K, Matsubara M. Effects of benidipine, a long-lasting dihydropyridine-Ca2+ channel blocker, on cerebral blood flow autoregulation in spontaneously hypertensive rats. Biol Pharmaceut Bull. 2006;29(11):2222–5.

Download references

Acknowledgements

The authors would like to acknowledge the support received from institutional and departmental sources.

Author information

Authors and Affiliations

Authors

Contributions

JW helped conduct literature search, analyze the data, write the manuscript, and approve the final manuscript. DLM helped write and edit the manuscript and approved the final manuscript. LM helped conceptualize the topic, provided the observational data, wrote and edited the manuscript, and approved the final manuscript.

Corresponding author

Correspondence to Lingzhong Meng.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Jin Wang, David L. McDonagh, and Lingzhong Meng have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 415 kb)

Supplementary file2 Supplementary video An intravenous bolus of nicardipine 0.4 mg was administered to a patient undergoing laparoscopic hysterectomy. It led to a quick decrease in BP (black belt with the upper and lower edges as systolic and diastolic BP and the red line within as the mean BP) and SVR (green belt). HR (pink tracing and pink numbers) and SV (blue numbers) are both mildly increased. As a result, cardiac output increased (not shown). Hemodynamics were monitored using a LiDCO monitor (LiDCO Group, London, UK). BP blood pressure, HR heart rate, SV stroke volume, SVR systemic vascular resistance (MOV 67126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., McDonagh, D.L. & Meng, L. Calcium Channel Blockers in Acute Care: The Links and Missing Links Between Hemodynamic Effects and Outcome Evidence. Am J Cardiovasc Drugs 21, 35–49 (2021). https://doi.org/10.1007/s40256-020-00410-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-020-00410-4

Navigation