American Journal of Cardiovascular Drugs

, Volume 18, Issue 4, pp 283–298 | Cite as

A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications

  • Phiwayinkosi V. Dludla
  • Stephanie C. Dias
  • Nnini Obonye
  • Rabia Johnson
  • Johan Louw
  • Bongani B. Nkambule
Systematic Review



Heart failure is the leading cause of death in patients with diabetes. No treatment currently exists to specifically protect these patients at risk of developing cardiovascular complications. Accelerated oxidative stress-induced tissue damage due to persistent hyperglycemia is one of the major factors implicated in deteriorated cardiac function within a diabetic state. N-acetyl cysteine (NAC), through its enhanced capacity to endogenously synthesize glutathione, a potent antioxidant, has displayed abundant health-promoting properties and has a favorable safety profile.


An increasing number of experimental studies have reported on the strong ameliorative properties of NAC. We systematically reviewed the data on the cardioprotective potential of this compound to provide an informative summary.


Two independent reviewers systematically searched major databases, including PubMed, Cochrane Library, Google scholar, and Embase for available studies reporting on the ameliorative effects of NAC as a monotherapy or in combination with other therapies against diabetes-associated cardiovascular complications. We used the ARRIVE and JBI appraisal guidelines to assess the quality of individual studies included in the review. A meta-analysis could not be performed because the included studies were heterogeneous and data from randomized clinical trials were unavailable.


Most studies support the ameliorative potential of NAC against a number of diabetes-associated complications, including oxidative stress. We discuss future prospects, such as identification of additional molecular mechanisms implicated in diabetes-induced cardiac damage, and highlight limitations, such as insufficient studies reporting on the comparative effect of NAC with common glucose-lowering therapies. Information on the comparative analysis of NAC, in terms of dose selection, administration mode, and its effect on different cardiovascular-related markers is important for translation into clinical studies.


NAC exhibits strong potential for the protection of the diabetic heart at risk of myocardial infarction through inhibition of oxidative stress. The effect of NAC in preventing both ischemia and non-ischemic-associated cardiac damage is also of interest. Consistency in dose selection in most studies reported remains important in dose translation for clinical relevance.



Protein kinase B


5′ AMP-activated protein kinase


Bcl-2 antagonist/killer 1


Bcl-2-like protein 4


B-cell lymphoma 2


Brahma-related gene


Cyclooxygenase 2


Connective tissue growth factor


Endothelial nitric oxide synthase


Extracellular signal-regulated kinase 1 and 2


Forkhead box protein O1




Heme oxygenase 1


Interleukin 6


Inducible nitric oxide synthase


Joanna Briggs Institute


c-Jun N-terminal kinases


N-ω-nitro-L-arginine methyl ester


n-acetyl cysteine


Nicotinamide adenine dinucleotide phosphate


Nuclear factor kappa-light-chain-enhancer of activated B cells

p38 MAPK

p38 mitogen-activated protein kinases


Tumor protein p53


Protein kinase RNA-like endoplasmic reticulum kinase


Reactive oxygen species


Superoxide dismutase


Signal transducer and activator of transcription 3




5-[5-(2-Nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid



The authors are indebted to Prof. Charles Shey Wiysonge of Cochrane South Africa for assistance with the development of this review.

Compliance with ethical standards


This study was funded by the Biomedical Research and Innovation Platform of the South Africa Medical Research Council (SAMRC). P.V. Dludla was partially supported as a Post-Doctoral Fellow by funding from the SAMRC. The SAMRC did not directly participate in the literature search, determination of study eligibility, data analysis, or interpretation or preparation of the manuscript for publication.

Conflict of interest

PVD, SCD, NO, RJ, JL, and BBN have no conflicts of interest that might be relevant to the contents of this manuscript.

Supplementary material

40256_2018_275_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)


  1. 1.
    Islam SM, Purnat TD, Phuong NT, Mwingira U, Schacht K, Froschl G. Non-communicable diseases (NCDs) in developing countries: a symposium report. Glob. Health. 2014;10:81.CrossRefGoogle Scholar
  2. 2.
    WHO. World health statistics 2012. World Health Organization (WHO), 2012. Accessed 20 Oct 2017.
  3. 3.
    WHO. The top 10 causes of death. 2017. Accessed 20 Oct 2017.
  4. 4.
  5. 5.
    Sharma MD, Farmer JA, Garber A. Type 2 diabetes and cardiovascular risk factors. Curr Med Res Opin. 2011;27(Suppl 3):1–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-beta-d-glucoside. Nutr Metab (Lond). 2017;14:45.CrossRefGoogle Scholar
  8. 8.
    Mannucci E, Dicembrini I, Lauria A, Pozzilli P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care. 2013;36(Suppl 2):S259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 2013;229(2):232–41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kobylecki CJ, Afzal S, Nordestgaard BG. Genetically low antioxidant protection and risk of cardiovascular disease and heart failure in diabetic subjects. EBioMedicine. 2015;2(12):2010–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ, et al. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem Toxicol. 2014;63:221–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Mohammadshahi M, Haidari F, Soufi FG. Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol J. 2014;21(1):39–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C, et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol. 2013;57:82–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375–415.CrossRefPubMedGoogle Scholar
  15. 15.
    Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301(2):H459–68.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang E, Guo Q, Gao H, Xu R, Teng S, Wu Y. Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/p53/p21 pathway. PloS One. 2015;10(12):e0143814.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Camuglia AC, Maeder MT, Starr J, Farrington C, Kaye DM. Impact of N-acetylcysteine on endothelial function, B-type natriuretic peptide and renal function in patients with the cardiorenal syndrome: a pilot cross over randomised controlled trial. Heart Lung Circ. 2013;22(4):256–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Giam B, Chu PY, Kuruppu S, Smith AI, Horlock D, Kiriazis H, et al. N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failure. Physiol Rep. 2016;4(7):e12757.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suddarth SB. Acetylcysteine, a new and effective mucolytic agent. Bull Geisinger. 1963;15:65–9.PubMedGoogle Scholar
  20. 20.
    Asevedo E, Mendes AC, Berk M, Brietzke E. Systematic review of N-acetylcysteine in the treatment of addictions. Rev Bras Psiquiatr. 2014;36(2):168–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Heard KJ. Acetylcysteine for acetaminophen poisoning. N Engl J Med. 2008;359(3):285–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rasi Hashemi S, Noshad H, Tabrizi A, Mobasseri M, Tayebi Khosroshahi H, Heydarnejad M, et al. Angiotensin receptor blocker and N-acetyl cysteine for reduction of proteinuria in patients with type 2 diabetes mellitus. Iran J Kidney Dis. 2012;6(1):39–43.PubMedGoogle Scholar
  23. 23.
    Schmitt B, Vicenzi M, Garrel C, Denis FM. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: a comparative crossover study. Redox Biol. 2015;6:198–205.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dludla PV, Muller CJ, Louw J, Joubert E, Salie R, Opoku AR, et al. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 2014;21(5):595–601.CrossRefPubMedGoogle Scholar
  25. 25.
    Girouard H, Denault C, Chulak C, de Champlain J. Treatment by N-acetylcysteine and melatonin increases cardiac baroreflex and improves antioxidant reserve. Am J Hypertens. 2004;17(10):947–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Haleagrahara N, Julian V, Chakravarthi S. N-acetylcysteine offers cardioprotection by decreasing cardiac lipid hydroperoxides and 8-isoprostane level in isoproterenol-induced cardiotoxicity in rats. Cardiovasc Toxicol. 2011;11(4):373–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu C, Lu XZ, Shen MZ, Xing CY, Ma J, Duan YY, et al. N-acetyl cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovasc Disord. 2015;15:84.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dludla PV, Nkambule BB, Dias SC, Johnson R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review. Syst Rev. 2017;6(1):96.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Institute The Joanna Briggs. Joanna Briggs Institute reviewers’ manual. 2016th ed. Australia: The Joanna Briggs Institute; 2016.Google Scholar
  31. 31.
    Matsuzaki T, Sakanashi M. Comparison of the development of tolerance to nitroglycerin in aortic preparations isolated from non-diabetic and diabetic rats. Heart Vessels. 1992;7(1):1–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol. 2004;37(5):959–68.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheng X, Xia Z, Leo JM, Pang CC. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes. Eur J Pharmacol. 2005;519(1–2):118–26.CrossRefPubMedGoogle Scholar
  34. 34.
    Nagareddy PR, Xia Z, MacLeod KM, McNeill JH. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats. J Cardiovasc Pharmacol. 2006;47(4):513–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Xia Z, Guo Z, Nagareddy PR, Yuen V, Yeung E, McNeill JH. Antioxidant N-acetylcysteine restores myocardial Mn-SOD activity and attenuates myocardial dysfunction in diabetic rats. Eur J Pharmacol. 2006;544(1–3):118–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Xia Z, Nagareddy PR, Guo Z, Zhang W, McNeill JH. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats. Free Radic Res. 2006;40(2):175–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Fauconnier J, Andersson DC, Zhang SJ, Lanner JT, Wibom R, Katz A, et al. Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes. 2007;56(4):1136–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Li S, Li X, Li YL, Shao CH, Bidasee KR, Rozanski GJ. Insulin regulation of glutathione and contractile phenotype in diabetic rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2007;292(3):H1619–29.CrossRefPubMedGoogle Scholar
  39. 39.
    Guo Z, Xia Z, Jiang J, McNeill JH. Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-l-cysteine. Am J Physiol Heart Circ Physiol. 2007;292(4):H1728–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Iwata K, Nishinaka T, Matsuno K, Kakehi T, Katsuyama M, Ibi M, et al. The activity of aldose reductase is elevated in diabetic mouse heart. J Pharmacol Sci. 2007;103(4):408–16.CrossRefPubMedGoogle Scholar
  41. 41.
    Pelletier A, Coderre L. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am J Physiol Endocrinol Metab. 2007;292(5):E1325–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Xia Z, Kuo KH, Nagareddy PR, Wang F, Guo Z, Guo T, et al. N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc Res. 2007;73(4):770–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Matejíková J, Kucharska J, Pancza D, Ravingerova T. The effect of antioxidant treatment and NOS inhibition on the incidence of ischemia-induced arrhythmias in the diabetic rat heart. Physiol Res. 2008;57(Suppl 2):S55–60.PubMedGoogle Scholar
  44. 44.
    Abdel Baky NA, Mohamed AM, Faddah LM. Protective effect of N-acetyl cysteine and/or provitamin A against monosodium glutamate-induced cardiopathy in rats. JPT. 2009;4(5):178–93.Google Scholar
  45. 45.
    Li Q, Hueckstaedt LK, Ren J. The protease inhibitor UCF-101 ameliorates streptozotocin-induced mouse cardiomyocyte contractile dysfunction in vitro: role of AMP-activated protein kinase. Exp Physiol. 2009;94(9):984–94.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zou P, Wu LL, Wu D, Fan D, Cui XB, Zhou Y, et al. High glucose increases periostin expression and the related signal pathway in adult rat cardiac fibroblasts. Sheng Li Xue Bao. 2010;62(3):247–54.PubMedGoogle Scholar
  47. 47.
    Gao S, Yuan K, Shah A, Kim JS, Park WH, Kim SH. Suppression of high pacing-induced ANP secretion by antioxidants in isolated rat atria. Peptides. 2011;32(12):2467–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Okazaki T, Otani H, Shimazu T, Yoshioka K, Fujita M, Iwasaka T. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart. Free Radic Res. 2011;45(10):1173–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, et al. Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol. 2011;300(4):H1133–40.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang J, Wang H, Hao P, Xue L, Wei S, Zhang Y, et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Mol Med. 2011;17(3–4):172–9.PubMedGoogle Scholar
  51. 51.
    Wang T, Qiao S, Lei S, Liu Y, Ng KF, Xu A, et al. N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats. PloS One. 2011;6(8):e23967.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Yonsei Med J. 2012;53(2):294–303.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu Y, Lei S, Gao X, Mao X, Wang T, Wong GT, et al. PKCbeta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci (Lond). 2012;122(4):161–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM. Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFkappaB signaling via attenuating ROS generation. Int J Cardiol. 2013;168(1):270–80.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, et al. N-acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med. 2013;63:291–303.CrossRefPubMedGoogle Scholar
  56. 56.
    Cicek FA, Toy A, Tuncay E, Can B, Turan B. Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. J Bioenerg Biomembr. 2014;46(5):377–87.CrossRefPubMedGoogle Scholar
  57. 57.
    Neves KB, Nguyen Dinh Cat A, Lopes RA, Rios FJ, Anagnostopoulou A, Lobato NS, et al. Chemerin regulates crosstalk between adipocytes and vascular cells through Nox. Hypertension. 2015;66(3):657–66.CrossRefPubMedGoogle Scholar
  58. 58.
    Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, et al. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes. 2015;64(2):618–30.CrossRefPubMedGoogle Scholar
  59. 59.
    Lin J, Wang T, Li Y, Wang M, Li H. N-acetylcysteine restores sevoflurane postconditioning cardioprotection against myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Res. 2016;2016:9213034.CrossRefPubMedGoogle Scholar
  60. 60.
    Shi S, Guo Y, Lou Y, Li Q, Cai X, Zhong X, et al. Sulfiredoxin involved in the protection of peroxiredoxins against hyperoxidation in the early hyperglycaemia. Exp Cell Res. 2017;352(2):273–80.CrossRefPubMedGoogle Scholar
  61. 61.
    Yao Y, Li R, Ma Y, Wang X, Li C, Zhang X, et al. Alpha-lipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidase-induced injury via ROS-dependent ERK1/2 activation. Biochim Biophys Acta. 2012;1823(4):920–9.CrossRefPubMedGoogle Scholar
  62. 62.
    De Bairros AV, Roehrs M, Ribeiro G, de Freitas F, Moreira AP, Tonello R, Mazzanti C, et al. Treatment with N-acetylcysteine does not alter blood glucose levels and the oxidative stress status in diabetic rats. J Pharm Negative Results. 2013;4(1):5.CrossRefGoogle Scholar
  63. 63.
    Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. 2013;12:158.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xu J, Lei S, Liu Y, Gao X, Irwin MG, Xia ZY, et al. Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res. 2013;2013:716219.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Xu W, Wu W, Chen J, Guo R, Lin J, Liao X, et al. Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways. Int J Mol Med. 2013;32(4):917–25.CrossRefPubMedGoogle Scholar
  66. 66.
    Yildirim SS, Akman D, Catalucci D, Turan B. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys. 2013;67(3):1397–408.CrossRefPubMedGoogle Scholar
  67. 67.
    Michaelson J, Hariharan V, Huang H. Hyperglycemic and hyperlipidemic conditions alter cardiac cell biomechanical properties. Biophys J. 2014;106(11):2322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Moazzen H, Lu X, Ma NL, Velenosi TJ, Urquhart BL, Wisse LJ, et al. N-acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 2014;13:46.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Muravyeva M, Baotic I, Bienengraeber M, Lazar J, Bosnjak ZJ, Sedlic F, et al. Cardioprotection during diabetes: the role of mitochondrial DNA. Anesthesiology. 2014;120(4):870–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tuncay E, Okatan EN, Toy A, Turan B. Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev. 2014;2014:290381.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu ZW, Wang JK, Qiu C, Guan GC, Liu XH, Li SJ, et al. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol Sin. 2015;36(3):323–33.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Moazzen H, Lu X, Liu M, Feng Q. Pregestational diabetes induces fetal coronary artery malformation via reactive oxygen species signaling. Diabetes. 2015;64(4):1431–43.CrossRefPubMedGoogle Scholar
  73. 73.
    Roussel J, Thireau J, Brenner C, Saint N, Scheuermann V, Lacampagne A, et al. Palmitoyl-carnitine increases RyR2 oxidation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes: role of adenine nucleotide translocase. Biochim Biophys Acta. 2015;1852(5):749–58.CrossRefPubMedGoogle Scholar
  74. 74.
    Ali F, Khan M, Khan SN, Riazuddin S. N-acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: a novel hypothesis for autologous stem cell transplantation. J Chin Med Assoc. 2016;79(3):122–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q, et al. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc Diabetol. 2016;15(1):146.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wang Y, Li H, Huang H, Liu S, Mao X, Wang S, et al. Cardioprotection from emulsified isoflurane postconditioning is lost in rats with streptozotocin-induced diabetes due to the impairment of Brg1/Nrf2/STAT3 signalling. Clin Sci (Lond). 2016;130(10):801–12.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang S, Wang C. N-acetylcysteine attenuates diabetic myocardial ischemia reperfusion injury through inhibiting excessive autophagy. Mediat Inflamm. 2017;2017:9257291.Google Scholar
  78. 78.
    Prescott LF, Park J, Ballantyne A, Adriaenssens P, Proudfoot AT. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet. 1977;2(8035):432–4.CrossRefPubMedGoogle Scholar
  79. 79.
    Kelly GS. Clinical applications of N-acetylcysteine. Altern Med Rev. 1998;3(2):114–27.PubMedGoogle Scholar
  80. 80.
    Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, Spitz DR. In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med. 1996;21(2):157–61.CrossRefPubMedGoogle Scholar
  81. 81.
    Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6(6):593–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2:38–44.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.CrossRefPubMedGoogle Scholar
  84. 84.
    Aronson D, Edelman ER. Coronary artery disease and diabetes mellitus. Cardiol Clin. 2014;32(3):439–55.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail. 2014;20(5):304–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.CrossRefPubMedGoogle Scholar
  87. 87.
    Falah RRTW, Shbailat SJ. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther Adv Med Oncol. 2017;9(4):235–52.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, et al. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res. 2016;60(4):922–34.CrossRefPubMedGoogle Scholar
  89. 89.
    Loscalzo J. N-acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest. 1985;76(2):703–8.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 2010;299(1):H18–24.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Dludla PV, Muller CJ, Joubert E, Louw J, Essop MF, Gabuza KB, et al. Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression. Molecules. 2017;22(1):129.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Phiwayinkosi V. Dludla
    • 1
  • Stephanie C. Dias
    • 1
  • Nnini Obonye
    • 1
  • Rabia Johnson
    • 1
    • 2
  • Johan Louw
    • 1
    • 3
  • Bongani B. Nkambule
    • 4
  1. 1.Biomedical Research and Innovation Platform (BRIP)South African Medical Research CouncilTygerbergSouth Africa
  2. 2.Division of Medical Physiology, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
  3. 3.Department of Biochemistry and MicrobiologyUniversity of ZululandRichards BaySouth Africa
  4. 4.School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations