N-Doped Carbon Nanofibrous Film with Unique Wettability, Enhanced Supercapacitive Property, and Facile Capacity to Demulsify Surfactant Free Oil-in-water Emulsions


Electrospinning and calcination technique have been combined to fabricate N-doped carbon nanofibers(N-CNFs) by introducing amino grafted few-layered hexagonal boron nitride (amino@BN) into polyacrylonitrile(PAN) matrix as filler followed by carbonization. For the high N-doping level(10.7%, atomic fraction) with the final product, the as-prepared N-CNFs exhibit interesting surface wettability(superamphiphilicity in air and underwater oleophilicity). Moreover, compared with pristine PAN derived carbon nanofibers(marked as CNFs), N-CNFs exhibit higher graphic structure under fixed carbonizing temperature as well. Taking these advantages aforementioned, the as-prepared N-CNFs exhibit good specific capacitance(ca. 200.1 F/g) without activation treatment at the current density of 0.5 A/g in three-electrode configuration, which is about 149% that of CNFs(ca. 134 F/g). What’s more, our N-CNFs also display the unexpected capacity to demulsify diverse surfactant free oil-in-water emulsions by simple filtration in large scale with the high water flux ca.(23578±150) L·m−2·h−1

This is a preview of subscription content, access via your institution.


  1. [1]

    Huang Y., Yuan X. J., Chen M. J., Song W. L., Chen J., Fan Q. F., Tang L. Q., Fang D. N., ACS Applied Materials & Interfaces, 2018, 10(51), 44731

    CAS  Article  Google Scholar 

  2. [2]

    Luan C. C., Yao X. H., Liu C. Z., Lan L. J., Fu J. Z. Carbon, 2018, 140, 100

    CAS  Article  Google Scholar 

  3. [3]

    Li Y. Y., Meng S., Gong Q. M., Huang Y. L., Gan J. N., Zhao M., Liu B., Liu L., Zou G. S., ACS Applied Materials & Interfaces, 2019, 11(24), 22005

    CAS  Article  Google Scholar 

  4. [4]

    Wu X. F., Gao Y., Wang Y., Jiang T., Yu J. H., Yang K., Zhao Y. T., Li W. G., ACS Omega, 2020, 5(23), 14133

    CAS  Article  Google Scholar 

  5. [5]

    Szmyt W., Vogel S., Diaz A., Holler M., Gobrecht J., Calame M., Dransfeld C., Carbon, 2017, 115, 347

    CAS  Article  Google Scholar 

  6. [6]

    Asmatulu R., Erukala K. S., Shinde M., Alarifi I. M., Gorji M. R., Surface & Coatings Technology, 2019, 380, 125006

    CAS  Article  Google Scholar 

  7. [7]

    Lin T. A., Chuang Y. C., Lin J. Y., Lin M. C., Lou C. W., Lin J. H., Polymer Composites, 2019, 40, E1910

    CAS  Article  Google Scholar 

  8. [8]

    Ren J., Bai W. Y., Guan G. Z., Zhang Y., Peng H. S., Advanced Materials, 2013, 25(41), 5965

    CAS  Article  Google Scholar 

  9. [9]

    Du J., Liu L., Hu Z. P., Yu Y. F., Zhang Y., Hou S. L., Chen A. B., ACS Sustainable Chemistry & Engineering, 2018, 6(3), 4008

    CAS  Article  Google Scholar 

  10. [10]

    Le T., Tian H., Cheng J., Huang Z. H., Kang F., Yang Y., Carbon, 2018, 138, 325

    CAS  Article  Google Scholar 

  11. [11]

    Hurilechaoketu, Wang J., Cui C. J., Qian W. Z., Carbon, 2019, 154, 1

    Article  Google Scholar 

  12. [12]

    Yan R. Y., Josef E., Huang H. J., Leus K., Niederberger M., Hofmann J. P., Walczak R., Antonietti M., Oschtz M., Advanced Functional Materials, 2019, 29(26), 1902858

    Article  Google Scholar 

  13. [13]

    Zhou J., Xu X. Z., Xin Y. Y., Lubineau G., Advanced Functional Materials, 2018, 28(16), 201705591

    Google Scholar 

  14. [14]

    Jang S., Kim J., Kim D. W., Kim J. W., Chun S., Lee H. J., Yi G. R., Pang C., ACS Applied Materials & Interfaces, 2019, 11(16), 15079

    CAS  Article  Google Scholar 

  15. [15]

    Jang Y., Kim S. M., Spinks G. M., Kim S. J., Advanced Materials, 2020, 32(5), 201902670

    Google Scholar 

  16. [16]

    Alcaniz-Monge J., Trautwein G., Marco-Lozar J. P., Applied Catalysis A: General, 2013, 468, 432

    CAS  Article  Google Scholar 

  17. [17]

    Ye J. S., Liu Z. T., Lai C. C., Lo C. T., Lee C. L., Chemical Engineering Journal, 2016, 283, 304

    CAS  Article  Google Scholar 

  18. [18]

    Tian L. D., Ji D. X., Zhang S., He X. W., Ramakrishna S., Zhang Q. Y., Small, 2020, 16(23), 202001743

    Google Scholar 

  19. [19]

    Wang Y. G., Qi T. Y., Hu M. X., Yang Y., Lei X., Wang L. D., Catalysts, 2020, 10(2), 244

    CAS  Article  Google Scholar 

  20. [20]

    Li Z.Y., Fan X. N., Wang R. F., Yang Q. B., Guo M. L., Wu Y. P., Wang J. F., Chen J. Y., Journal of Power Sources, 2020, 463, 228112

    CAS  Article  Google Scholar 

  21. [21]

    McConville A., Mathur A., Davis J., IEEE Sensors Journal, 2019, 19(1), 34

    CAS  Article  Google Scholar 

  22. [22]

    Zhang H. G., Qi B. Q., Hu Q. X., Yan B., Liu D. L., Journal of Biomaterials and Tissue Engineering, 2019, 9(7), 922

    Article  Google Scholar 

  23. [23]

    Papkov D., Beese A. M., Goponenko A., Zou Y., Naraghi M., Espinosa H. D., Saha B., Schatz G. C., Moravsky A., Loutfy R., Nguyen S. T., Dzenis Y., ACS Nano, 2013, 7(1), 126

    CAS  Article  Google Scholar 

  24. [24]

    Papkov D., Goponenko A., Compton O. C., An Z., Moravsky A., Li X. Z., Nguyen S. T., Dzenis, Y., Advanced Functional Materials, 2013, 23(46), 5763

    CAS  Article  Google Scholar 

  25. [25]

    Li Z., Zabihi O., Wang J., Li Q., Wang J., Lei W., Naebe M., RSC Advances, 2017, 7(5), 2621

    CAS  Article  Google Scholar 

  26. [26]

    Lin E. K., Wu W.-L., Satija S. K., Macromolecules, 1997, 30(23), 7224

    CAS  Article  Google Scholar 

  27. [27]

    Hulicova-Jurcakova D., Seredych M., Lu G. Q., Bandosz T. J., Advanced Functional Materials, 2009, 19(3), 438

    CAS  Article  Google Scholar 

  28. [28]

    Zhao X., Wang A., Yan J., Sun G., Sun L., Zhang T., Chemistry of Materials, 2010, 22(19), 5463

    CAS  Article  Google Scholar 

  29. [29]

    Bubert H., Ai X., Haiber S., Heintze M., Brüser V., Pasch E., Brandl W., Marginean G., Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(10), 1601

    Article  Google Scholar 

  30. [30]

    Wei G., Fujiki K., Saitoh H., Shirai K., Tsubokawa N., Polymer Journal, 2004, 36(4), 316

    CAS  Article  Google Scholar 

  31. [31]

    Gupta R., Goel R., Microelectronics and Reliability, 1991, 31(1), 1

    Article  Google Scholar 

  32. [32]

    Oh G.-Y., Ju Y.-W., Kim M.-Y., Jung H.-R., Kim H. J., Lee W.-J., Science of the Total Environment, 2008, 393(2/3), 341

    CAS  Article  Google Scholar 

  33. [33]

    Zhi C. Y., Bando Y., Terao T., Tang C. C., Kuwahara H., Golberg D., Advanced Functional Materials, 2009, 19(12), 1857

    CAS  Article  Google Scholar 

  34. [34]

    Lei W., Mochalin V. N., Liu D., Qin S., Gogotsi Y., Chen Y., Nature Communications, 2015, 6, 8849

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (No.52073238), the Open Funds of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploration of Southwest Petroleum University, China(Nos. PLN2018-06, PLN2020-19) and the Fund of the Sichuan Provincial University Key Laboratory of Oil and Gas Field Materials, China(Nos.X151518KCL04, X151518KCL07).

Author information



Corresponding authors

Correspondence to Jingyu Chen or Zhenzhong Hu.

Additional information

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Lei, W., Wang, L. et al. N-Doped Carbon Nanofibrous Film with Unique Wettability, Enhanced Supercapacitive Property, and Facile Capacity to Demulsify Surfactant Free Oil-in-water Emulsions. Chem. Res. Chin. Univ. (2021). https://doi.org/10.1007/s40242-021-0434-x

Download citation


  • Carbon nanofibrous membrane
  • Unique wettability
  • Supercapacitor
  • Demulsification of oil-water emulsion