Abstract
Electrochemical sensing technology has received extensive attention from researchers for its unique detection and analysis methods as well as the promising applications in clinical diagnosis. Compared with other detection methods, such as capillary electrophoresis, high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, the electrochemical sensor overcomes the disadvantages of expensive cost and complicated operation, as an ideal device for in vitro detection. In this article, we mainly introduce some methods for the detection of biologically important compounds and cancer biomarkers, and briefly summarize the characteristics of these methods at first. And then, we also focus on the latest research progress in the application of electrochemical sensing technology to biologically important compounds’ and cancer biomarkers’ detection. Finally, the development trend and challenges of electrochemical sensing technology for in vitro diagnosis are also prospected.
This is a preview of subscription content, access via your institution.
References
- [1]
Wongkaew N., Simsek M., Griesche C., Baeumner A. J., Chemical Reviews, 2019, 119, 120
- [2]
Cui F. Y., Zhou Z. R., Zhou H. S., Journal of the Electrochemical Society, 2020, 167, 037525
- [3]
Negahdary M., Biosensors & Bioelectronics, 2020, 152, 112018
- [4]
Cesewski E., Johnson B. N., Biosensors & Bioelectronics, 2020, 159, 112214
- [5]
Tang Z. W., Huang J., He H. L., Ma C. B., Wang K. M., Coordination Chemistry Reviews, 2020, 415, 213317
- [6]
Khosroshahi Z., Karimzadeh F., Kharaziha M., Allafchian A., Materials Science & Engineering C: Materials for Biological Applications, 2019, 108, 110216
- [7]
Rahsepara M., Foroughia F., Kim H., Sensors and Actuators B: Chemical, 2019, 282, 332
- [8]
Zahed M. A., Barman S. C., Das P. S., Sharifuzzaman M., Yoon H. S., Yoon S. H., Park J. Y., Biosensors & Bioelectronics, 2020, 160, 112
- [9]
Raja M., Gupta P., Goyala R. N., Shimb Y. B., Sensors and Actuators B: Chemical, 2017, 239, 993
- [10]
Zheng Z. X., Feng Q. L., Zhu M. J., Shang J., Li M., Li C., Kou L. Z., Zheng J. B., Wang C. M., Analytica Chimica Acta, 2019, 1078, 231
- [11]
Maheshwaran S., Akilarasan M., Chen S. M., Chen T. W., Tamilalagan E., Tzu C. Y., Lou B. S., Journal of the Electrochemical Society, 2020, 167, 066517
- [12]
Peng Y. F., Li R. Y., Sun X. L., Wang G. L., Li Z. J., Analytica Chimica Acta, 2020, 1121, 17
- [13]
Li R. Y., Pu T. L., Chu H. X., Shi J. S., Li Z. J., Sensors and Actuators B: Chemical, 2020, 309, 127709
- [14]
Zhang Q W., Jiang D. F., Xu C. S., Ge Y. C., Liu X. H., Wei Q. Q., Huang L. P., Ren X. Q., Wang C. D., Wang Y., Sensors and Actuators B: Chemical, 2020, 320, 128325
- [15]
Afzali M., Mostafavi A., Shamspur T., Talanta, 2019, 196, 92
- [16]
Li Z., Zhang H. M., Zha Q. B., Zhai C. Y., Li W. B., Zeng L. X., Zhu M. S., Mikrochim Acta, 2020, 187, 526
- [17]
Zhang Z., Yu W., Wang J., Luo D., Qiao X. Z., Qin X. Y., Wang T., Analytical Chemistry, 2017, 89, 1416
- [18]
Amiri M., Arshi S., Electroanalysis, 2020, 32, 1391
- [19]
Krishnan R. G., Rejithamol R., Saraswathyamma B., Microchemical Journal, 2020, 155, 104745
- [20]
Cevik E., Cerit A., Gazel N., Yildiz H. B., Electroanalysis, 2018, 30, 2445
- [21]
Kaur G., Tomar M., Gupta V., Sensors and Actuators B: Chemical, 2018, 261, 460
- [22]
Hart N. T., Lane W. C., Garza L., Journal of Chemical Education, 2020, 97, 2254
- [23]
Tavakolian E., Tashkhourian J., Razmi Z., Kazemi H., Hosseini-Sarvari M., Sensors and Actuators B: Chemical, 2016, 230, 87
- [24]
Zhang X., Xie G. M., Gou D., Luo P., Yao Y., Chen H., Biosensors & Bioelectronics, 2019, 142, 111486
- [25]
Xu H. Y., Shao M. W., Chen T., Zhuo S. J., Wen C. Y., Peng M. F., Microporous and Mesoporous Materials, 2012, 153, 35
- [26]
Soares J. C., Soares A. C., Rodrigues V. C., Melendez M. E., Santos A. C., Faria E. F., Reis R. M., Carvalho A. L., Oliveira O. N., ACS Applied Materials & Interfaces, 2019, 11, 46645
- [27]
Lee G. Y., Park J. H., Chang Y. W., Cho S., Kang M. J., Pyun J. C., ACS Sensors, 2018, 3, 106
- [28]
Anderson T. J., Defnet P. A., Zhang B., Analytical Chemistry, 2020, 92, 6748
- [29]
Xue J. W., Yang L., Du Y., Ren Y., Ren X., Ma H. M., Wu D., Ju H. X., Li Y. Y., Wei Q., Sensors and Actuators B: Chemical, 2020, 321, 128454
- [30]
Clark L. C., Lyons C., Annals of the New York Academy of Sciences, 1962, 102, 29
- [31]
Updike S. J., Hicks G. P., Science, 1967, 158, 270
- [32]
Xu J., Xu K. K., Han Y., Wang D., Li X., Hu T., Yi H., Ni Z. H., Analyst, 2020, 14, 5141
- [33]
Huang Z. C., Zhang A. M., Zhang Q., Pan S. J., Cui D. X., Journal of the Electrochemical Society, 2019, 166, B1138
- [34]
Yoon H., Nah J., Kim H., Ko S., Sharifuzzaman M., Barman S. C., Xuan X., Kim J., Park J. Y., Sensors and Actuators B: Chemical, 2020, 311, 127866
- [35]
Zhang Y., Xu F. G., Sun Y. J., Shi Y., Wen Z. W., Li Z., Journal of Materials Chemistry, 2011, 21, 16949
- [36]
Ma L., Wang X. Y., Zhang Q. R., Tong X. L., Zhang Y., Li Z., Analytical Methods, 2018, 10, 3845
- [37]
Makrlikova A., Opekar F., Tuma P., Electrophoresis, 2015, 36, 1962
- [38]
Solinova V., Zakova L., Jiracek J., Kasicka V., Analytica Chimica Acta, 2019, 1052, 170
- [39]
Fukuda T., Muguruma H., Iwasa H., Tanaka T., Hiratsuka A., Shimizu T., Tsuji K., Kishimoto T., Analytical Biochemistry, 2020, 590, 113533
- [40]
Azeredo N. F. B., Gonćalves J. M., Rossini P. O., Araki K., Wang J., Angnes L., Microchimica Acta, 2020, 187, 379.
- [41]
Bao Y. Y., Li Z. P., Wang H. Y., Li N., Pan Q. L., Li J., Zhao J. G., Yang R. H., Feng F., Langmuir, 2020, 36, 7365
- [42]
Ma L., Zhang Q. R., Wu C., Zhang Y., Zeng L. T., Analytica Cheimica Acta., 2019, 1055, 17
- [43]
Shrestha B. K., Ahmad R., Shrestha S., Park C. H., Kim C. S., Biosensors & Bioelectronics, 2017, 94, 686
- [44]
Willyam S. J., Saepudin E., Ivandini T. A., Analytical Methods, 2020, 12, 3454
- [45]
Akshaya K. B., Varghese A., Nidhin M., George L., Journal of the Electrochemical Society, 2019, 166, B1016
- [46]
Thakur N., Kumar M., Das Adhikary S., Mandal D., Nagaiah T. C., Chemical Communications, 2019, 55, 5021
- [47]
Gao J., Huang W. Z., Chen Z. P., Yi C. Q., Jiang L. L., Sensors and Actuators B: Chemical, 2019, 287, 102
- [48]
Shervedani R. K., Amini A., Bioelectrochemistry, 2012, 84, 25
- [49]
Xu H. Y., Shao M. W., Chen T., Zhuo S. J., Wen C. Y., Peng M. F., Microporous and Mesoporous Materials, 2012, 153, 35
- [50]
Atta N. F., Galal A., Ali S. M., Hassan S. H., Ionics, 2015, 21, 2371
- [51]
Huang R. F., Guo L. H., Science China Chemistry, 2010, 53, 1778
- [52]
Si Y., Zhang A. Y., Liu C., Pei D. N., Yu H. Q., Analytical Chemistry, 2020, 92, 9629
- [53]
Thakur N., Chaturvedi A., Mandal D., Nagaiah T. C., Chemical Communications, 2020, 56, 8448
- [54]
Anuar N. S., Basirun W. J., Shalauddin M., Akhter S., RSC Advances, 2020, 10, 17336
- [55]
Senel M., Dervisevic M., Alhassen S., Alachkar A., Voelcker N. H., Analytical Chemistry, 2020, 92, 7746
- [56]
Sun X. J., Zhang L., Zhang X. H., Liu X. X., Jian J., Kong D. C., Zeng D. C., Yuan H. M., Feng S. H., Biosensors & Bioelectronics, 2020, 153, 112045
- [57]
Zhao S., Zhang Y. C., Ding S. T., Fan J. C., Luo, Z., Liu K. G., Shi Q., Li W. C., Zang G. C., Journal of Electroanalytical Chemistry, 2019, 834, 33
- [58]
Lee M. H., Thomas J. L., Chang Y. C., Tsai Y. S., Liu B. D., Lin H. Y., Biosensors & Bioelectronics, 2016, 79, 789
- [59]
Martin A., Batalla P., Hernandez-Ferrer J., Martinez M. T., Escarpa A., Biosensors & Bioelectronics, 2015, 68, 163
- [60]
Martínez-Perinán E., Revenga-Parra M., Zamora F., Pariente F., Lorenzo E., Sensors and Actuators B: Chemical, 2016, 236, 773
- [61]
Dhara K., Debiprosad R. M., Analytical Biochemistry, 2019, 586, 113415
- [62]
Hashemi S. A., Mousavi S. M., Bahrani S., Ramakrishna S., Babapoor A., Chiang W. H., Analytica Chimica Acta, 2020, 1107, 183
- [63]
Zhao L. F., Li S. J., He J., Tian G. H., Wei Q., Li H., Biosensors & Bioelectronics, 2013, 49, 222
- [64]
Wei Y. C., Li Y., Li N., Zhang Y., Yan T., Ma H. M., Wei Q., Biosensors & Bioelectronics, 2016, 79, 482
- [65]
Cui M., Wang Y., Jiao M. X., Jayachandran S., Wu Y. M., Fan X. J., Luo X. L., ACS Sensors, 2017, 2, 490
- [66]
Li G. Y., Li S. S., Wang Z. H., Xue Y. W., Dong C. Y., Zeng J. X., Huang Y., Liang J. J., Zhou Z. D., Analytical Biochemistry, 2018, 547, 37
- [67]
Huang X. Y., Cui B. B., Ma Y. S., Yan X., Xia L., Zhou N., Wang M. H., He L. H., Zhang Z. H., Analytica Chimica Acta, 2019, 1078, 125
- [68]
Azimzadeh M., Rahaie M., Nasirizadeh N., Ashtari K., Naderi-Manesh H., Biosensors & Bioelectronics, 2016, 77, 99
- [69]
Yang D. W., Cheng W. B., Chen X. F., Tang Y. G., Miao P., Analyst, 2018, 143, 5352
- [70]
Kutluk H., Bruch R., Urban G. A., Dincer C., Biosensors & Bioelectronics, 2020, 148, 111824
- [71]
Xu S., Chang Y. Y., Wu Z. Y., Li Y. R., Yuan R., Chai Y. Q., Biosensors & Bioelectronics, 2020, 149, 111848
- [72]
Moccia M., Caratelli V., Cinti S., Pede B., Avitabile C., Saviano M., Imbrani A. L., Moscone D., Arduini F., Biosensors & Bioelectronics, 2020, 165, 112371
- [73]
Liu G. D., Wang J., Wu H., Wai C. M., Lin Y. H., Analytical Chemistry, 2007, 79, 7644
- [74]
Kavosi B., Salimi A., Hallaj R., Moradi F., Biosensors & Bioelectronics, 2015, 74, 915
- [75]
Ding C. F., Wang X. Y., Luo X. L., Analytical Chemistry, 2019, 91, 15846
- [76]
Liang H., Xu H. B., Zhao Y. T., Zheng J., Zhao H., Li G. L., Li C. P., Biosensors & Bioelectronics, 2019, 144, 111691
- [77]
Zhao Y., Liu H., Shi L., Zheng W. W., Jing X. H., Sensors and Actuators B: Chemical, 2020, 315, 128155
- [78]
Liu X. B., Yue T., Qi K., Qiu Y. B., Guo X. P., Talanta, 2020, 217, 121042
- [79]
Gold P., Freedman S. O., Journal of Experimental Medicine, 1965, 121, 439
- [80]
Wu J., Tang J. H., Dai Z., Yan F., Ju H. X., El Murr N., Biosensors & Bioelectronics, 2006, 22, 102
- [81]
Tang D. P., Yuan R., Chal Y. Q., Analytical Chemistry, 2008, 80, 1582
- [82]
Zhang X. Y., Yu Y., Shen J. L., Qi W., Wang H., Talanta, 2020, 212, 120794
- [83]
Zheng J., Wang J. P., Song D. D., Xu J. L., Zhang M., ACS Applied Nano Materials, 2020, 3, 3449
- [84]
Lan Q. C., Ren C. L., Lambert A., Zhang G. C., Li J., Cheng Q., Hu X. Y., Yang Z. J., ACS Sustainable Chemistry & Engineering, 2020, 8, 4392
- [85]
Pakchin P. S., Ghanbari H., Saber R., Omidi Y., Biosensors & Bioelectronics, 2018, 122, 68
- [86]
Fan Y., Shi S. Y., Ma J. S., Guo Y. H., Biosensors & Bioelectronics, 2019, 135, 1
- [87]
Pakchin P. S., Fathi M., Ghanbari H., Saber R., Omidi Y., Biosensors & Bioelectronics, 2020, 153, 112029
- [88]
de Castro A. C. H., Alves L. M., Siquieroli A. C. S., Madurro J. M., Brito-Madurro A. G., Microchemical Journal., 2020, 155, 104746
- [89]
Lu C. Y., Han J. T., Sun X. Y., Yang G., Sensors, 2020, 20, 6073
- [90]
Cao J., Zhao X. P., Younis M. R., Li Z. Q., Xia X. H., Wang C., Analytical Chemistry, 2017, 89, 10957
- [91]
Peng Y., Pan Y. H., Han Y. W., Sun Z. W., Jalalah M., Al-Assiri M. S., Harraz F. A., Yang J., Li G. X., Analytical Chemistry, 2020, 92, 13478
- [92]
Liu P. F., Wang L., Zhao K. R., Liu Z. J., Cao H. X., Ye S. Y., Liang G. X., Sensors and Actuators B: Chemical, 2020, 316, 128131
- [93]
Tang S. T., Shen H. W., Hao Y. X., Huang Z. L., Tao Y. Y., Peng Y., Guo Y. C., Xie G. M., Feng W. L., Biosensors & Bioelectronics, 2020, 104, 72
- [94]
Zhang W. Z., Chen H., Yang M. H., Liao L. Q., Materials Letters, 2020, 276, 128219
- [95]
Du X., Zhang Z. H., Zheng X. D., Zhang H. Y., Dong D., Zhang Z. G., Liu M., Zhou J., Nature Communications, 2020, 11, 192
- [96]
Granato T., Porpora M. G., Longo F., Angeloni A., Manganaro L., Anastasi E., Clinica Chimica Acta, 2015, 446, 147
- [97]
Zamorano A. S., Hagemann A. R., Morrison L., Lee J. A., Liao L. M., Brinton L. A., Park Y., Toriola A. T., Gynecologic Oncology, 2019, 155, 105
- [98]
Mattarozzi M., Giannetto M., Careri M., Talanta, 2020, 217, 120991
- [99]
Doxtater K., Tripathi M. K., Khan M. M., Neural Regeneration Research, 2020, 15, 2253
- [100]
Zhang Y. T, Figueroa-Miranda G., Wu C. T., Willbold D., Offenhausser A., Mayer D., Nanoscale, 2020, 12, 16501
- [101]
Tang P. P., Wang Y. B., He F. Y., Journal of Saudi Chemical Society, 2020, 24, 620
- [102]
Feng D. Z., Su J., He G. F., Xu Y., Wang C. G., Zheng M. M., Qian Q. L., Mi X. Q., Biosensors Basel, 2020, 10, 78
- [103]
Huang R. R., He L., Xia Y. Y., Xu H. P., Liu C., Xie H., Wang S., Peng L. J., Liu Y. F., Liu Y., He N. Y., Li Z. Y., Small, 2019, 15, 1900735
- [104]
Gorgannezhad L., Umer M., Islam M. N., Nguyen N. T., Shiddiky M. J. A., Lab on a Chip, 2018, 18, 1174
- [105]
Rahman M., Cui D. X., Zhou S. K., Zhang A., Chen D., Analytical Methods, 2020, 12, 440
Acknowledgements
This work is partially supported by the National Natural Science Foundation of China(Nos.21605113, 21925405, 21635002 and 201874005), the National Key Research and Development Program of China(No.2018YFA0208800), and the Project of the Chinese Academy of Sciences(Nos.XDA23030106 and YJKYYQ20180044).
Author information
Affiliations
Corresponding authors
Additional information
Availability of Data and Materials
All data generated or analyzed during this study are included in this published article and its supplementary information files.
Conflicts of Interest
The authors declare no conflicts of interest.
Rights and permissions
About this article
Cite this article
Li, D., Wu, C., Tang, X. et al. Electrochemical Sensors Applied for In vitro Diagnosis. Chem. Res. Chin. Univ. (2021). https://doi.org/10.1007/s40242-021-0387-0
Received:
Accepted:
Published:
Keywords
- Electrochemical sensor
- In vitro diagnosis
- Biologically important compound
- Cancer biomarker