Comparison of Two Rhodamine-polyamine Polystyrene Solid-phase Fluorescence Sensors for Hg(II) Detection Based on Theoretical Calculation

Abstract

Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-I and PS-PA-II with different lengths of polyamines were synthesized for Hg(II) determination. The detection mechanism involving the Hg(II) chelation-induced spirocycle open of rhodamine was proposed with the aid of theoretical calculation. The stronger N—Hg bond and the longer polyamine chain in PS-PA-II led to a better selectivity, much higher and more quickly fluorescence response to Hg(II).

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Patil S. K., Das D., Spectrochim. Acta A, 2020, 225, 117504

    CAS  Article  Google Scholar 

  2. [2]

    Li Y., Qi S., Xia C., Xu Y., Duan G., Ge Y., Anal. Chim. Acta, 2019, 1077, 243

    CAS  Article  Google Scholar 

  3. [3]

    Wang Y., Ding H., Wang S., Fan C., Tu Y., Liu G., Pu S., RSC Adv., 2019, 9, 11664

    CAS  Article  Google Scholar 

  4. [4]

    Ni J., Li B., Zhang L., Zhao H., Jiang H., Sensor Actuat B: Chem., 2015, 215, 174

    CAS  Article  Google Scholar 

  5. [5]

    Lan T., Wang F., Xi X., Cheng C., Lei W., Xia M., Wang F., Anal. Sci., 2016, 32, 1223

    CAS  Article  Google Scholar 

  6. [6]

    Wan D., Li Y., Zhu P., Sensor Actuat B: Chem., 2015, 221, 1271

    CAS  Article  Google Scholar 

  7. [7]

    Feng L., Sha J., He Y., Chen S., Liu B., Zhang H., Lu C., Micropor Mesopor Mat., 2015, 208, 113

    CAS  Article  Google Scholar 

  8. [8]

    Jeong J., Rao B. A., Son Y., Sensor Actuat B: Chem., 2015, 220, 1254

    CAS  Article  Google Scholar 

  9. [9]

    Sen B., Mukherjee M., Banerjee S., Pal S., Chattopadhyay P., Dalton Trans., 2015, 44, 8708

    CAS  Article  Google Scholar 

  10. [10]

    Kumar P., Kumar V., Gupta R., RSC Adv., 2017, 7, 7734

    CAS  Article  Google Scholar 

  11. [11]

    Zhang D., Zhou W., Li J., Mi Y., Su Z., Ma G., Polymers: Basel, 2016, 8, 142

    Article  Google Scholar 

  12. [12]

    Qin L., He X., Zhang W., Li W., Zhang Y., J. Chromatogr. A, 2009, 1216, 807

    CAS  Article  Google Scholar 

  13. [13]

    Leng L., Li Y., Liu Y., Li F., Xiong X., Anal. Lett., 2017, 50, 2944

    CAS  Article  Google Scholar 

  14. [14]

    Lee M. H., Wu J., Lee J. W., Jung J. H., Kim J. S., Org. Lett., 2007, 9, 2501

    CAS  Article  Google Scholar 

  15. [15]

    Yuan M., Zhou W., Liu X., Zhu M., Li J., Yin X., Zheng H., Zuo Z., Ouyang C., Liu H., Li Y., Zhu D., J. Org. Chem., 2008, 73, 5008

    CAS  Article  Google Scholar 

  16. [16]

    Kaewtong C., Noiseephum J., Uppa Y., Morakot N., Morakot N., Wanno B., Tuntulani T., Pulpoka B., New J. Chem., 2010, 34, 1104

    CAS  Article  Google Scholar 

  17. [17]

    Bai F., Yang X., Li R., Huang B., Huang W., Polymer, 2006, 47, 5775

    CAS  Article  Google Scholar 

  18. [18]

    Zhang B., Lu J., Liu X., Jin H., He G., Guo X., Int. J. Polym. Sci., 2018, 8702597

  19. [19]

    Zhang H., Seaman J., Wang Y., Zeng H., Narain R., Ulrich A., Liu Y., J. Environ. Eng., 2017, 143, 04017032

    Article  Google Scholar 

  20. [20]

    Clark M., Cramer R. D., Opdenbosh N. V., J. Comput. Chem., 1989, 10, 982

    CAS  Article  Google Scholar 

  21. [21]

    Liu Y., He G., Kai C., Li Y., Zhu H., J. Heterocyclic Chem., 2012, 49, 1370

    CAS  Article  Google Scholar 

  22. [22]

    Abu El-Reash G. M., Zaky R. R., El-Gamil M. M., El-Emam S. M., J. Mol. Liq., 2019, 288, 111030

    CAS  Article  Google Scholar 

  23. [23]

    Hasan S. H., Othman N. S., Surchi K. M., Curr Anal Chem., 2016, 12, 330

    CAS  Article  Google Scholar 

  24. [24]

    Neupane L. N., Kim J. M., Lohani C. R., Lee K. H., J. Mater. Chem., 2012, 22, 4003

    CAS  Article  Google Scholar 

  25. [25]

    Hu B., Hu L., Chen M., Wang J., Biosens. Bioelectron., 2013, 49, 499

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Additional information

Supported by the Natural Science Foundation of Jiangsu Province, China(No.BK20161542), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China(No.17KJB150006) and the Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents of Jiangsu Province, China(No.2017).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y., Zong, L. et al. Comparison of Two Rhodamine-polyamine Polystyrene Solid-phase Fluorescence Sensors for Hg(II) Detection Based on Theoretical Calculation. Chem. Res. Chin. Univ. 36, 781–786 (2020). https://doi.org/10.1007/s40242-019-9258-3

Download citation

Keywords

  • Carboxylated polystyrene microsphere
  • Rhodamine polyamine
  • Solid-phase fluorescence sensor
  • Fluorescent property
  • Hg(II) detection mechanism