Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic

Abstract

Superoxide anion, one of the most active reactive oxygen species, is associated with the development of many diseases. So monitoring superoxide anion in living cells is of great significance for the pathological research of many diseases. In this work, a new non-enzymatic sensor for the detection of superoxide anion(O•−2 ) was developed, which was fabricated by the nanocomposites composed of manganese(III) tetraphenyl porphine(MnTPP) as superoxide dismutase mimic and electrochemical reduced graphene oxide(ERGO) as electrode support material to modify the glassy carbon electrode(GCE). The electrochemical behavior of the fabricated electrode(MnTPP/ERGO/GCE) was performed by electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV), which revealed that MnTPP/ERGO/GCE possessed good catalytic ability to the electrochemical reduction of O•−2 . The MnTPP/ERGO/GCE showed excellent electroanalysis performance towards O•−2 using the technique of differential pulse voltammetry(DPV) with a linear relationship in the range of 0.2–110.0 µmol/L, a sensitivity of 445 µA·L·mmol−1·cm−2 and a detection limit of 0.039 µmol/L(S/N=3). The real-time monitoring of O•−2 from MCF-7 breast cancer cells stimulated by zymosan was realized in this work, which indicates that the MnTPP/ERGO/GCE hold potential application for electrochemical quantification of superoxide anions in biological applications.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H., Scott R. W., Snider W. D., Nat. Genet., 1996, 13(1), 43

    CAS  PubMed  Google Scholar 

  2. [2]

    Tong L., Chuang C. C., Wu S., Zuo L., Cancer Lett., 2015, 367(1), 18

    CAS  PubMed  Google Scholar 

  3. [3]

    Maier C. M., Chan P. H., The Neuroscientist, 2002, 8(4), 323

    CAS  PubMed  Google Scholar 

  4. [4]

    Uttara B., Singh A. V., Zamboni P., Mahajan R. T., Curr. Neuropharmacol., 2009, 7(1), 65

    CAS  PubMed  PubMed Central  Google Scholar 

  5. [5]

    Wang W., Fang H., Groom L., Cheng A., Zhang W., Liu J., Wang X., Li K., Han P., Zheng M., Yin J., Wang W., Mattson M. P., Kao J. P., Lakatta E. G., Sheu S. S., Ouyang K., Chen J., Dirksen R. T., Cheng H., Cell, 2008, 134(2), 279

    CAS  PubMed  PubMed Central  Google Scholar 

  6. [6]

    Zhao F., Gu W., Zhou J., Liu Q., Chong Y., J. Environ. Sci. Heal. C, 2019, 1

  7. [7]

    Warwar N., Mor A., Fluhr R., Pandian R. P., Kuppusamy P., Biophys. J., 2011, 101(6), 1529

    CAS  PubMed  PubMed Central  Google Scholar 

  8. [8]

    Magnani L., Gaydou E. M., Hubaud J. C., Anal. Chim. Acta, 2000, 411(1/2), 209

    CAS  Google Scholar 

  9. [9]

    Ukeda H., Shimamura T., Tsubouchi M., Harada Y., Nakai Y., Sawamura M., Anal. Sci., 2002, 18(10), 1151

    CAS  PubMed  Google Scholar 

  10. [10]

    Yamaguchi S., Kishikawa N., Ohyama K., Ohba Y., Kohno M., Masuda T., Takadate A., Nakashima K., Kuroda N., Anal. Chim. Acta, 2010, 665(1), 74

    CAS  PubMed  Google Scholar 

  11. [11]

    Reichl S., Vocks A., Petkovic M., Schiller J., Arnhold J., Free Radical Res., 2001, 35(6), 723

    CAS  Google Scholar 

  12. [12]

    Diez L., Livertoux M. H., Stark A. A, Wellman-Rousseau M., Leroy P., J. Chromatogr. B: Biomed. Sci. Appl., 2001, 763(1/2), 185

    CAS  Google Scholar 

  13. [13]

    Wang L., Liu S., Zheng Z., Pi Z., Song F., Liu Z., Anal. Methods, 2015, 7(4), 1535

    CAS  Google Scholar 

  14. [14]

    Hu J. J., Wong N. K., Ye S., Chen X. M., Lu M. Y., Zhao A. Q., Guo Y. H., Ma A. C. H., Leung A. Y. H., Shen J. G., Yang D., J. Am. Chem. Soc., 2015, 137(21), 6837

    CAS  PubMed  Google Scholar 

  15. [15]

    Ohyashiki T., Nunomura M., Katoh T., BBA—Biomembranes, 1999, 1421(1), 131

    CAS  PubMed  Google Scholar 

  16. [16]

    Shen X., Wang Q., Liu Y., Xue W., Ma L., Feng S., Wan M., Wang F., Mao C., Sci. Rep, 2016, 6, 144

    Google Scholar 

  17. [17]

    Wu T., Li L., Song G., Ran M., Lu X., Liu X., Microchim. Acta, 2019, 186(3), 198

    Google Scholar 

  18. [18]

    Liu X., Ran M., Liu G., Liu X., Xue Z., Lu X., Talanta, 2018, 186, 248

    CAS  PubMed  Google Scholar 

  19. [19]

    Kim S.K., Kim D., You J. M., Han H. S., Jeon S., Electrochim. Acta, 2012, 81, 31

    CAS  Google Scholar 

  20. [20]

    Zhu X., Niu X., Zhao H., Tang J., Lan M., Biosens. Bioelectron., 2015, 67, 79

    CAS  PubMed  Google Scholar 

  21. [21]

    Tang J., Zhu X., Niu X., Liu T., Zhao H., Lan M., Talanta, 2015, 137, 18

    CAS  PubMed  Google Scholar 

  22. [22]

    Liu Y., Liu X., Liu Y., Liu G., Ding L., Lu X., Biosens. Bioelectron., 2017, 90, 39

    CAS  PubMed  Google Scholar 

  23. [23]

    Deng Z., Rui Q., Yin X., Liu H., Tian Y., Anal. Chem., 2008, 80, 5839

    CAS  PubMed  Google Scholar 

  24. [24]

    Rajesh S., Kanugula A. K., Bhargava K., Ilavazhagan G., Kotamraju S., Karunakaran C., Biosens. Bioelectron., 2012, 26(2), 689

    Google Scholar 

  25. [25]

    Salimi A., Noorbakhsh A., Rafiee-Pour H. A., Electroanal., 2011, 23(3), 683

    CAS  Google Scholar 

  26. [26]

    Archibald F. S., Fridovich I., Arch. Biochem. Biophys., 1982, 214(2), 452

    CAS  PubMed  Google Scholar 

  27. [27]

    Barnese K., Gralla E. B., Valentine J. S., Cabelli D. E., Proc. Natl. Acad. Sci. USA, 2012, 109(18), 6892

    CAS  PubMed  Google Scholar 

  28. [28]

    Wang M. Q., Ye C., Bao S. J., Xu M. W., Microchim. Acta, 2017, 184(4), 1177

    CAS  Google Scholar 

  29. [29]

    Ding A., Liu F., Zheng J., Chen J., Li C., Wang B., Macromol. Mater. Eng., 2018, 303(6), 1800079

    Google Scholar 

  30. [30]

    Guo X. M., Guo B., Li C., Wang Y. L., J. Electroanal. Chem., 2016, 783, 8

    CAS  Google Scholar 

  31. [31]

    Sebarchievici I., Tăranu B. O., Birdeanu M., Rus S. F., Appl. Surf. Sci., 2016, 390, 131

    CAS  Google Scholar 

  32. [32]

    Miriyala S., Spasojevic I., Tovmasyan A., Salvemini D., Vujaskovic Z., Clair D. S., Batinic-Haberle I., BBA—Mol. Basis Dis., 2012, 1822(5), 794

    CAS  Google Scholar 

  33. [33]

    Cui M., Xu B., Hu C., Hui B. S., Qu L., Electrochim. Acta, 2013, 98, 48

    CAS  Google Scholar 

  34. [34]

    Chen L., Tang Y., Wang K., Liu C., Luo S., Electrochem. commun.2011, 13(2), 133

    CAS  Google Scholar 

  35. [35]

    Yang L., Liu D., Huang J., You T., Sensor. Actuat. B: Chem., 2014, 193, 166

    CAS  Google Scholar 

  36. [36]

    Ren J., Yu C., Cui M., Li Y., Wu C., Ji X., Chinese J. Anal. Chem., 2017, 45(1), 104

    CAS  Google Scholar 

  37. [37]

    Thandavan K., Gandhi S., Sethuraman S., Rayappan J. B. B., Krishnan U. M., Sensor. Actuat. B: Chem., 2013, 176, 884

    CAS  Google Scholar 

  38. [38]

    Wang M., Wang Q., Zhu W., Yang Y., Zhou H., Zhang F., Razal J. M., Wallace G. G., Chen J., Green Energ. Environ., 2017, 2(3), 285

    Google Scholar 

  39. [39]

    Ehret R., Baumann W., Brischwein M., Schwinde A., Stegbauer K., Wolf B., Biosens. Bioelectron., 1997, 12(1), 29

    CAS  PubMed  Google Scholar 

  40. [40]

    Zhang Y., Yun Z., Wang H., Yan B., Shen G., Yu R., J. Electroanal. Chem., 2009, 627(1/2), 9

    CAS  Google Scholar 

  41. [41]

    Dashtestani F., Ghourchian H., Eskandari K., Rafiee-Pour H. A., Microchim. Acta, 2015, 182(5/6), 1045

    CAS  Google Scholar 

  42. [42]

    Santhosh P., Manesh K. M., Lee S. H., Uthayakumar S., Gopalan A. I., Lee K. P., Analyst, 2011, 136(8), 1557

    CAS  PubMed  Google Scholar 

  43. [43]

    Rafiee-Pour H. A., Noorbakhsh A., Salimi A., Ghourchian H., Electroanal., 2010, 22(14), 1599

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jujie Ren or Xueping Ji.

Additional information

Supported by the National Natural Science Foundation of China(No.81872669) and the Scientific Research Projects of the Department of Education of Hebei Province, China(Nos.ZD2018037, QN2019140).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Ren, J., Wen, X. et al. Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic. Chem. Res. Chin. Univ. 36, 774–780 (2020). https://doi.org/10.1007/s40242-019-0006-5

Download citation

Keywords

  • Superoxide anion
  • Electrochemical sensor
  • Manganese(III) tetraphenyl porphine
  • Electrochemical reduced graphene oxide
  • MCF-7 breast cancer cell