Skip to main content
Log in

Stripping Voltammetric Analysis of Mercury at Base-treated Graphene Oxide Electrodes

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

According to the Rourke’s model, graphene oxide(GO) synthesized from the oxidation of graphite actually consisted of partly oxidized graphene sheets and highly oxidized debris(OD). The OD was strongly adhered to the surface of graphene sheets, while they could be facilely removed by a base-washing procedure. The existence and removal by base-washing of OD were characterized by means of thermogravimetric analysis(TGA), FTIR spectroscopy, X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and Raman spectroscopy. The adsorption of OD not only made a great difference to the physical and chemical properties of GO, but also affected its electrochemical behavior when it was employed as an electrode material. In this article, we demonstrated that the electrochemical deposition and the subsequent voltammetric stripping analysis of mercury were significantly influenced by the presence of OD. The consequence suggests that the presence of OD on the sheets of GO restricts the electrochemical deposition behavior of mercury and further lowers the sensitivity of the voltammetric stripping responses. The sensitivity was observed as 0.78 A L mol‒1 at base-washed(bw)-GO/GC(glassy carbon) better than that at as-prepared GO(a-GO)/GC for 0.28 A L mol‒1. The limit of detection was calculated as 2.95 and 0.83 μmol/L before and after removing the OD, respectively. The availability of both electrodes was evaluated by detecting Hg2+ in lake water specimens using standard samples recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bansod B. K., Kumar T., Thakur R., Rana S., Singh I., Biosensors and Bioelectronics, 2017, 94, 443

    Article  CAS  Google Scholar 

  2. Hong M., Wang M., Wang J., Xu X., Lin Z., Biosensors and Bioelectronics, 2017, 94, 19

    Article  CAS  Google Scholar 

  3. Davidson C. M., Thomas R. P., McVey S. E., Perala R., Littlejohn D., Ure A. M., Anal. Chim. Acta, 1994, 291(3), 277

    Article  CAS  Google Scholar 

  4. Li X. D., Coles B. J., Ramsey M. H., Thornton I., Chem. Geology, 1995, 124(1/2), 109

    Article  CAS  Google Scholar 

  5. Wang H., Wu Z. K., Chen B. B., He M., Hu B., Analyst, 2015, 140(16), 5619

    Article  CAS  Google Scholar 

  6. Zhu L. D., Tian C. Y., Yang R. L., Zhai J. L., Electroanal., 2008, 20(5), 527

    Article  CAS  Google Scholar 

  7. Jia L., Dong L. N., Zhu L. D., Appl. Mater. Today, 2017, 8, 26

    Article  Google Scholar 

  8. Suherman A. L., Tanner E. E. L., Compton R. G., Trends in Analyti-cal Chemistry, 2017, 94, 161

    Article  CAS  Google Scholar 

  9. Yang D. X., Zhu L. D., Jiang X. Y., J. Electroanal. Chem., 2010, 640(1), 17

    Article  CAS  Google Scholar 

  10. Wu Y. H., Mao X. Y., Cui X. J., Zhu L. D., Sensours and Actuators B, 2010, 145(2), 749

    Article  CAS  Google Scholar 

  11. Li X. M., Ma D. Y., Zhu L. D., Chemistry-A European J., 2015, 21(48), 17239

    Article  CAS  Google Scholar 

  12. Yang D. X., Zhu L. D., Jiang X. Y., Guo L. P., Sensors and Actuators B: Chemical, 2009, 141(1), 124

    Article  CAS  Google Scholar 

  13. Economou A., Fielden P. R., Analyst, 2003, 128(3), 205

    CAS  Google Scholar 

  14. Wang J., Lu J., Hocevar S. B., Electroanal., 2001, 13(1), 13

    Article  Google Scholar 

  15. Nguyen H. L., Cao H. H., Nguyen D. T., Electroanal., 2017, 29(2), 595

    Article  CAS  Google Scholar 

  16. Mahmoudian M. R., Basirun W. J., Alias Y., RSC Advances, 2016, 6(43), 36459

    Article  CAS  Google Scholar 

  17. Sahoo S., Satpati A. K., Reddy A. V. R., RSC Advances, 2015, 5(33), 25794

    Article  CAS  Google Scholar 

  18. Hassan R. Y. A., Kamel M. S., Hassan H. N. A., J. Electroanal. Chem., 2015, 759, 101

    Article  CAS  Google Scholar 

  19. Dumitrescu I., Unwin P. R., Macpherson J. V., Chem. Commun., 2009, (45), 6886

    Article  Google Scholar 

  20. Banks C. E., Davies T. J., Wildgoose G. G., Compton R. G., Chem. Commun., 2005, (7), 829

    Article  Google Scholar 

  21. Shao Y. Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y., Electroanal., 2010, 22(10), 1027

    Article  CAS  Google Scholar 

  22. Tan F., Cong L. C., Saucedo N. M., Gao J. S., Li X. N., Mulchandani A., J. Hazard. Mater., 2016, 320, 226

    Article  CAS  Google Scholar 

  23. Li Y. M., Tang L. H., Li J. H., Electrochem. Commun., 2009, 11(4), 846

    Article  Google Scholar 

  24. Wang L., Ambrosi A., Pumera M., Chemistry-An Asian J., 2013, 8(6), 1200

    Article  CAS  Google Scholar 

  25. Li J., Guo S. J., Zhai Y. M., Wang E. K., Electrochem. Commun., 2009, 11(5), 1085

    Article  CAS  Google Scholar 

  26. Wang Z. M., Liu E. J., Talanta, 2013, 103, 47

    Article  CAS  Google Scholar 

  27. Gong J. M., Zhou T., Song D. D., Zhang L. Z., Sensors and Actuators B: Chemical, 2010, 150(2), 491

    Article  CAS  Google Scholar 

  28. Rourke J. P., Pandey P. A., Moore J. J., Bates M., Kinloch I. A., Young R. J., Wilson N. R., Angew. Chem., 2011, 123(14), 3231

    Article  Google Scholar 

  29. Bonanni A., Ambrosi A., Chua C. K., Pumera M., ACS Nano, 2014, 8(5), 4197

    Article  CAS  Google Scholar 

  30. Li X. M., Yang X. Y., Jia L., Ma X., Zhu L. D., Electrochem. Com-mun., 2012, 23, 94

    Article  Google Scholar 

  31. Ma X., Jia L., Zhang L., Zhu L. D., Chem. Eur. J., 2014, 20(14), 4072

    Article  CAS  Google Scholar 

  32. Ma D. Y., Dong L. N., Zhou M., Zhu L. D., Analyst, 2016, 141(9), 2761

    Article  CAS  Google Scholar 

  33. Faria A. F., Martinez D. S. T., Moraes A. C. M., Chem. Mater., 2012, 24(21), 4080

    Article  CAS  Google Scholar 

  34. Brownson D. A. C., Banks C. E., Electrochem. Commun., 2011, 13(2), 111

    Article  CAS  Google Scholar 

  35. Xu Y. X., Bai H., Lu G., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130(18), 5856

    Article  CAS  Google Scholar 

  36. Shen J. F., Hu Y. Z., Shi M., Lu X., Li C., Ye M. X., Chem. Mater., 2009, 21(15), 3514

    Article  CAS  Google Scholar 

  37. Fogden S., Verdejo R., Cottam B., Shaffer M., Chem. Phys. Lett., 2008, 460(1–3), 162

    Article  CAS  Google Scholar 

  38. Chua C. K., Ambrosi A., Pumera M., J. Mater. Chem., 2012, 22(22), 11054

    Article  CAS  Google Scholar 

  39. Yang X. Y., Li X. M., Ma X., Zhu L. D., RSC Advances, 2013, 3, 6752

    Article  CAS  Google Scholar 

  40. Akhavan O., ACS Nano, 2010, 4(7), 4174

    Article  CAS  Google Scholar 

  41. Roushani M., Valipour A., Saedi Z., Sensors and Actuators B: Chemical, 2016, 233, 419

    Article  CAS  Google Scholar 

  42. Yasri N. G., Sundramoorthy A. K., Chang W. J., Front. Mater., 2014, 1, 33

    Article  Google Scholar 

  43. Cesarino I., Marino G., do Rosário Matos J., Talanta, 2008, 75(1), 15

    Article  CAS  Google Scholar 

  44. Ratner N., Mandler D., Anal. Chem., 2015, 87(10), 5148

    Article  CAS  Google Scholar 

  45. Rajawat D. S., Srivastava S., Satsangee S. P., Int. J. Electrochem. Sci., 2012, 7(11), 11456

    CAS  Google Scholar 

  46. Domínguez-Renedo O., Alonso-Lomillo M. A., Ferreira-Goncalves L., Talanta, 2009, 79(5), 1306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liande Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Dong, L., Xiang, D. et al. Stripping Voltammetric Analysis of Mercury at Base-treated Graphene Oxide Electrodes. Chem. Res. Chin. Univ. 34, 971–977 (2018). https://doi.org/10.1007/s40242-018-8134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-8134-x

Keywords

Navigation