Surface Properties and Etherification in Microemulsion Systems of Novel Brönsted Acid Surfactants

Article
  • 4 Downloads

Abstract

Novel Brönsted acid-surfactants with different alkyl chains were synthesized via a two-step process, and their surface properties were studied. The critical micelle concentration(cmc), surface tension at the cmc(γcmc), and ability of these compounds to lower the surface tension by 0.02 N/m(C20 and pC20) were investigated at 25 and 40 °C. The molecular architecture of the compounds strongly influenced these physicochemical parameters. The ability of these compounds to lower surface tension was found to be good. Etherification in microemulsions formed by these surfactants as well as dodecylbenzenesulfonic acid(DBSA) was performed; surfactants 3a and 3b were found to be much more efficient than DBSA.

Keywords

Brönsted acid surfactant Microemulsion Critical micelle concentration(cmc) Etherification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Domínguez R., Rodríguez A., Maestre A., Robina I., Moyá M. L., J. Colloid Inter. Sci., 2012, 386(1), 228CrossRefGoogle Scholar
  2. [2]
    Mouraa E. F., Netoa A. O. W., Dantasa T. N., Júniora H. S., Gurgel A., Colloid. Surfaces A 2009, 340, 199CrossRefGoogle Scholar
  3. [3]
    Chen J., Qiao M., Gao N., Ran Q., Wu S., Qi S., Colloid. Surface A 2017, 522, 593CrossRefGoogle Scholar
  4. [4]
    Wang X., Li R., Li Z., Liu J., J. Colloid Inter. Sci., 2017, 505, 847CrossRefGoogle Scholar
  5. [5]
    Manabe K., Limura S., Sun X.M., Kobayashi S., J. Am. Chem. Soc., 2002, 124, 11971CrossRefGoogle Scholar
  6. [6]
    Limura S., Manabe K., Kobayashi S., Org. Lett. 2003, 5, 101CrossRefGoogle Scholar
  7. [7]
    Jang H., Lee H., Colloid. Surfaces A 2018, 538, 574CrossRefGoogle Scholar
  8. [8]
    Menger F. M., Elringtn A. R., J. Am. Chem. Soc., 1991, 113, 9621CrossRefGoogle Scholar
  9. [9]
    Yin J. C., Chen Y. K., Jiang J. Z., Cui Z. G., Chem. J. Chinese Universities, 2017, 38(9), 1645Google Scholar
  10. [10]
    Liu X., Xing X., Gao Z., Colloid. Surfaces A 2014, 457, 374CrossRefGoogle Scholar
  11. [11]
    Dong D., Ouyang Y., Yu H., Liu Q., Liu J., Wang M., Zhu J., J. Org. Chem., 2005, 70, 4535CrossRefGoogle Scholar
  12. [12]
    Fernando Silva O., de Rossia Rita H., Mariano Correa N., RSC Adv. 2015, 5, 34878CrossRefGoogle Scholar
  13. [13]
    Jing L., Li X., Han Y., Chu Y., Colloid. Surface A 2008, 326, 37CrossRefGoogle Scholar
  14. [14]
    Han Y., Chu Y., J. Mol. Catal. A: Chem., 2005, 273, 232CrossRefGoogle Scholar
  15. [15]
    Song K., Chu Y., Dong L., Song J., Wang D., J. Mol. Catal. A: Chem., 2008, 282, 144CrossRefGoogle Scholar
  16. [16]
    Malferrari D., Armenise N., Decessari S., Galletti P., Tagliavini E., ACS Sustain Chem. Eng., 2015, 3, 1579CrossRefGoogle Scholar
  17. [17]
    Wang X., Yan F., Li Z., Zhang L., Zhao S., An J., Yu J., Colloid. Surfaces A 2007, 302, 532CrossRefGoogle Scholar
  18. [18]
    You A., Cao Y., Cao G., Chem. Res. Chinese Universities 2017, 33(4), 525CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations