Skip to main content
Log in

Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree of hydrogenation. Here we reported the controllable hydrogenation of graphene using ball-milling method with acetic acid as hydrogenating agent. The hydrogenation graphene sheets were characterized by means of transmission electron microscopy(TEM), Raman spectroscopy and X-ray photoelectron spectroscopy, and magnetic measurement. The relusts of Raman spectroscopy demonstrate that the relative intensity of D band increases with the hydrogenation degree. The resluts of magnetic meansurement indicate the maximal magnetic moment of 0.274 A·m2/kg at 2 K for semi-hydrogenation graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards R. S., Coleman K. S., Nanoscale, 2012, 5(1), 38

    Article  PubMed  Google Scholar 

  2. Li L., Qin R., Li H., Yu L., Liu Q., Luo G., Gao Z. X., Lu J., ACS Nano, 2011, 5(4), 2601

    Article  CAS  PubMed  Google Scholar 

  3. Allemand P. M., Khemani K. C., Koch A., Wudl F., Holczer K., Do-novan S., Grüner G., Thompson J. D., Science, 1991, 253(5017), 301

    Article  CAS  PubMed  Google Scholar 

  4. Kenmochi K., Sato K., Yanase A., Katayamayoshida H., JJAP, 2004, 44(44), 51

    Google Scholar 

  5. Yue Z. J., Seo D. H., Ostrikov K., Wang X. L. Applied Physics Let-ters, 2014, 104(9), 249

    Google Scholar 

  6. Qin S., Sun P., Di Q., Zhou S., Yang C., Xu Q., RSC Adv., 2015, 5(113), 92899

    Article  CAS  Google Scholar 

  7. Eng A. Y. S., Poh H. L., Šaněk F., Maryško M., Matějková S., Sofer Z., Pumera M., ACS Nano, 2013, 7(7), 5930

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y., Huang Y., Song Y., Zhang X., Ma Y., Liang, J., Chen Y., Nano Lett., 2009, 9(1), 220

    Article  CAS  PubMed  Google Scholar 

  9. Tang T., Tang N. J., Zheng Y. P., Wan X. G., Liu Y., Liu F. C., Xu Q. H., Du, Y, W., Sci. Rep., 2015, 5, 8448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raj K. G., Joy P. A., Chem. Phys. Lett., 2014, 605/606(6), 89

    Google Scholar 

  11. Yazyev O. V., Tavernelli I., Rothlisberger U., Helm L., Phys. Rev. B, 2007, 75(11), 115418

    Article  CAS  Google Scholar 

  12. Zhang Y., Nayak T. R., Hong H., Cai W., Nanoscale, 2012, 4(13), 3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao C. N. R., Matte H. S. S. R., Subrahmanyam K. S., Maitra, U., Cheminform, 2012, 43(13), 45

    Google Scholar 

  14. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Phys. Rev. B, 1996, 54(24), 17954

    Article  CAS  Google Scholar 

  15. Kusakabe K., Maruyama M., Phys. Rev. B, 2002, 67(9), 552

    Google Scholar 

  16. David S., Nicolas L., Pablo O., Jean-Christophe C., Juan-Jose P., Stephan, R., Phys. Rev. Lett., 2011, 107(1), 5826

    Google Scholar 

  17. Jia X., Hofmann M., Meunier V., Sumpter B. G., Campos-Delgado J., Romo Herrera J. M., Science, 2009, 323(5922), 1701

    CAS  PubMed  Google Scholar 

  18. Krauss B., Nemes-Incze P., Skakalova V., Biro L. P., Klitzing K. V., Smet J. H., Nano Lett., 2010, 10(11), 4544

    Article  CAS  PubMed  Google Scholar 

  19. Sofo J. O., Chaudhari A. S., Barber G. D., Physical Review B, 2007, 75(15), 153401

    Article  CAS  Google Scholar 

  20. Samarakoon D. K., Wang X. Q., ACS Nano, 2009, 3(12), 4017

    Article  CAS  PubMed  Google Scholar 

  21. Shkrebtii A. I., Heritage E., Mcnelles P., Cabellos J. L., Mendoza B. S., Physica Status Solidi, 2012, 9(6), 1378

    Article  CAS  Google Scholar 

  22. Lebegue S., Klintenberg M., Eriksson O., Katsnelson M. I., Phys. Rev. B, 2009, 79(24), 1377

    Article  CAS  Google Scholar 

  23. Alzahrani A. Z., Srivastava G. P., Applied Surface Science, 2010, 256(19), 5783

    Article  CAS  Google Scholar 

  24. Schäfer R. A., Englert J. M., Peter W., Walter B., Frank H., Thomas S., Angew. Chem., 2013, 52(2), 754

    Article  CAS  Google Scholar 

  25. Zhou J., Wang Q., Sun Q., Chen X. S., Kawazoe Y., Jena P., Nano Lett., 2009, 9(11), 3867

    Article  CAS  PubMed  Google Scholar 

  26. Wei D. C., Wu B., Guo Y. L., Yu G., Liu Y. Q., Acc. Chem. Res., 2012, 46(1), 106

    Article  CAS  PubMed  Google Scholar 

  27. Cui X., Zhang C., Hao R., Hou Y., Nanoscale, 2011, 3(5), 2118

    Article  CAS  PubMed  Google Scholar 

  28. Coleman J. N., Acc. Chem. Res., 2012, 46(1), 14

    Article  CAS  PubMed  Google Scholar 

  29. Mildred Q., Ester V., Maurizio P., Acc. Chem. Res., 2013, 46(1), 138

    Article  CAS  Google Scholar 

  30. Vasilios G., Michal O., Bourlinos A. B., Vimlesh C., Namdong K., Kemp C. K., Chem. Rev., 2012, 112(10), 6156

    Google Scholar 

  31. León V., Quintana M., Herrero M. A., Fierro J. L. G., Hoz A. D. L., Prato M., Chem. Comm., 2011, 47(39), 10936

    Article  CAS  PubMed  Google Scholar 

  32. Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Science, 2009, 323(6), 610

    Article  CAS  PubMed  Google Scholar 

  33. Burgess J. S., Matis B. R., Robinson J. T., Bulat F. A., Perkins F. K., Houston B. H., Carbon, 2011, 13(13), 4420

    Article  CAS  Google Scholar 

  34. Luo Z., Yu T., Kim K. J., Ni Z., You Y., Lim S., ACS Nano, 2009, 3(7), 1781

    Article  CAS  PubMed  Google Scholar 

  35. Kim H., Balgar T., Hasselbrink E., Chem. Phys. Lett., 2012, 546(1), 12

    Article  CAS  Google Scholar 

  36. Xie L., Wang X., Lu J., Ni Z., Applied Physics Letters, 2011, 98(19), 666

    Article  CAS  Google Scholar 

  37. Tadyszak K., Strzelczyk R., Maćkowiak M., Augustyniak-Jabłokow M. A., Journal of Molecular Structure, 2014, 1076, 31

    Article  CAS  Google Scholar 

  38. Zhang R., Zhang B., Sun S. Q., RSC Adv.,2015, 5(56), 44783

    Article  CAS  Google Scholar 

  39. Liu D., Lei W., Chen Y., Phys. Chem. Chem. Phys., 2015,17(10), 6913

    Article  CAS  PubMed  Google Scholar 

  40. Sepioni M., Nair R. R., Rablen S., Narayanan J., Tuna F., Winpenny R., Phys. Rev. Lett., 2010, 105(20), 205

    Article  CAS  Google Scholar 

  41. Li S., Tian L., Shi L., Wen L., Ma T., Journal of Physics: Condensed Matter, 2016, 28(8), 086001

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Zhao or Xiaoyang Liu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21271082, 21371068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Wang, X., Li, B. et al. Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism. Chem. Res. Chin. Univ. 34, 344–349 (2018). https://doi.org/10.1007/s40242-018-8001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-8001-9

Keywords

Navigation