Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 344–349 | Cite as

Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism

  • Qiushi Sun
  • Xiaofeng Wang
  • Benxian Li
  • Yunpeng Wu
  • Ziqing Zhang
  • Xinyang Zhang
  • Xudong Zhao
  • Xiaoyang Liu
Article
  • 38 Downloads

Abstract

Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree of hydrogenation. Here we reported the controllable hydrogenation of graphene using ball-milling method with acetic acid as hydrogenating agent. The hydrogenation graphene sheets were characterized by means of transmission electron microscopy(TEM), Raman spectroscopy and X-ray photoelectron spectroscopy, and magnetic measurement. The relusts of Raman spectroscopy demonstrate that the relative intensity of D band increases with the hydrogenation degree. The resluts of magnetic meansurement indicate the maximal magnetic moment of 0.274 A·m2/kg at 2 K for semi-hydrogenation graphene.

Keywords

Graphene Hydrogenated graphene Ball-milling Ferromagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Edwards R. S., Coleman K. S., Nanoscale, 2012, 5(1), 38CrossRefGoogle Scholar
  2. [2]
    Li L., Qin R., Li H., Yu L., Liu Q., Luo G., Gao Z. X., Lu J., ACS Nano, 2011, 5(4), 2601CrossRefGoogle Scholar
  3. [3]
    Allemand P. M., Khemani K. C., Koch A., Wudl F., Holczer K., Do-novan S., Grüner G., Thompson J. D., Science, 1991, 253(5017), 301CrossRefGoogle Scholar
  4. [4]
    Kenmochi K., Sato K., Yanase A., Katayamayoshida H., JJAP, 2004, 44(44), 51Google Scholar
  5. [5]
    Yue Z. J., Seo D. H., Ostrikov K., Wang X. L. Applied Physics Let-ters, 2014, 104(9), 249Google Scholar
  6. [6]
    Qin S., Sun P., Di Q., Zhou S., Yang C., Xu Q., RSC Adv., 2015, 5(113), 92899CrossRefGoogle Scholar
  7. [7]
    Eng A. Y. S., Poh H. L., Šaněk F., Maryško M., Matějková S., Sofer Z., Pumera M., ACS Nano, 2013, 7(7), 5930CrossRefGoogle Scholar
  8. [8]
    Wang Y., Huang Y., Song Y., Zhang X., Ma Y., Liang, J., Chen Y., Nano Lett., 2009, 9(1), 220CrossRefGoogle Scholar
  9. [9]
    Tang T., Tang N. J., Zheng Y. P., Wan X. G., Liu Y., Liu F. C., Xu Q. H., Du, Y, W., Sci. Rep., 2015, 5, 8448CrossRefGoogle Scholar
  10. [10]
    Raj K. G., Joy P. A., Chem. Phys. Lett., 2014, 605/606(6), 89Google Scholar
  11. [11]
    Yazyev O. V., Tavernelli I., Rothlisberger U., Helm L., Phys. Rev. B, 2007, 75(11), 115418CrossRefGoogle Scholar
  12. [12]
    Zhang Y., Nayak T. R., Hong H., Cai W., Nanoscale, 2012, 4(13), 3833CrossRefGoogle Scholar
  13. [13]
    Rao C. N. R., Matte H. S. S. R., Subrahmanyam K. S., Maitra, U., Cheminform, 2012, 43(13), 45Google Scholar
  14. [14]
    Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Phys. Rev. B, 1996, 54(24), 17954CrossRefGoogle Scholar
  15. [15]
    Kusakabe K., Maruyama M., Phys. Rev. B, 2002, 67(9), 552Google Scholar
  16. [16]
    David S., Nicolas L., Pablo O., Jean-Christophe C., Juan-Jose P., Stephan, R., Phys. Rev. Lett., 2011, 107(1), 5826Google Scholar
  17. [17]
    Jia X., Hofmann M., Meunier V., Sumpter B. G., Campos-Delgado J., Romo Herrera J. M., Science, 2009, 323(5922), 1701Google Scholar
  18. [18]
    Krauss B., Nemes-Incze P., Skakalova V., Biro L. P., Klitzing K. V., Smet J. H., Nano Lett., 2010, 10(11), 4544CrossRefGoogle Scholar
  19. [19]
    Sofo J. O., Chaudhari A. S., Barber G. D., Physical Review B, 2007, 75(15), 153401CrossRefGoogle Scholar
  20. [20]
    Samarakoon D. K., Wang X. Q., ACS Nano, 2009, 3(12), 4017CrossRefGoogle Scholar
  21. [21]
    Shkrebtii A. I., Heritage E., Mcnelles P., Cabellos J. L., Mendoza B. S., Physica Status Solidi, 2012, 9(6), 1378CrossRefGoogle Scholar
  22. [22]
    Lebegue S., Klintenberg M., Eriksson O., Katsnelson M. I., Phys. Rev. B, 2009, 79(24), 1377CrossRefGoogle Scholar
  23. [23]
    Alzahrani A. Z., Srivastava G. P., Applied Surface Science, 2010, 256(19), 5783CrossRefGoogle Scholar
  24. [24]
    Schäfer R. A., Englert J. M., Peter W., Walter B., Frank H., Thomas S., Angew. Chem., 2013, 52(2), 754CrossRefGoogle Scholar
  25. [25]
    Zhou J., Wang Q., Sun Q., Chen X. S., Kawazoe Y., Jena P., Nano Lett., 2009, 9(11), 3867CrossRefGoogle Scholar
  26. [26]
    Wei D. C., Wu B., Guo Y. L., Yu G., Liu Y. Q., Acc. Chem. Res., 2012, 46(1), 106CrossRefGoogle Scholar
  27. [27]
    Cui X., Zhang C., Hao R., Hou Y., Nanoscale, 2011, 3(5), 2118CrossRefGoogle Scholar
  28. [28]
    Coleman J. N., Acc. Chem. Res., 2012, 46(1), 14CrossRefGoogle Scholar
  29. [29]
    Mildred Q., Ester V., Maurizio P., Acc. Chem. Res., 2013, 46(1), 138CrossRefGoogle Scholar
  30. [30]
    Vasilios G., Michal O., Bourlinos A. B., Vimlesh C., Namdong K., Kemp C. K., Chem. Rev., 2012, 112(10), 6156Google Scholar
  31. [31]
    León V., Quintana M., Herrero M. A., Fierro J. L. G., Hoz A. D. L., Prato M., Chem. Comm., 2011, 47(39), 10936CrossRefGoogle Scholar
  32. [32]
    Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Science, 2009, 323(6), 610CrossRefGoogle Scholar
  33. [33]
    Burgess J. S., Matis B. R., Robinson J. T., Bulat F. A., Perkins F. K., Houston B. H., Carbon, 2011, 13(13), 4420CrossRefGoogle Scholar
  34. [34]
    Luo Z., Yu T., Kim K. J., Ni Z., You Y., Lim S., ACS Nano, 2009, 3(7), 1781CrossRefGoogle Scholar
  35. [35]
    Kim H., Balgar T., Hasselbrink E., Chem. Phys. Lett., 2012, 546(1), 12CrossRefGoogle Scholar
  36. [36]
    Xie L., Wang X., Lu J., Ni Z., Applied Physics Letters, 2011, 98(19), 666CrossRefGoogle Scholar
  37. [37]
    Tadyszak K., Strzelczyk R., Maćkowiak M., Augustyniak-Jabłokow M. A., Journal of Molecular Structure, 2014, 1076, 31CrossRefGoogle Scholar
  38. [38]
    Zhang R., Zhang B., Sun S. Q., RSC Adv.,2015, 5(56), 44783CrossRefGoogle Scholar
  39. [39]
    Liu D., Lei W., Chen Y., Phys. Chem. Chem. Phys., 2015,17(10), 6913CrossRefGoogle Scholar
  40. [40]
    Sepioni M., Nair R. R., Rablen S., Narayanan J., Tuna F., Winpenny R., Phys. Rev. Lett., 2010, 105(20), 205CrossRefGoogle Scholar
  41. [41]
    Li S., Tian L., Shi L., Wen L., Ma T., Journal of Physics: Condensed Matter, 2016, 28(8), 086001Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiushi Sun
    • 1
  • Xiaofeng Wang
    • 1
  • Benxian Li
    • 1
  • Yunpeng Wu
    • 1
  • Ziqing Zhang
    • 1
  • Xinyang Zhang
    • 1
  • Xudong Zhao
    • 1
  • Xiaoyang Liu
    • 1
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations