Effect of Thermal Cycles on the Thermal Expansion Behavior of T700 Carbon Fiber Bundles

Article
  • 6 Downloads

Abstract

The relationships between the coefficient of thermal expansion(CTE) of T700 carbon fiber bundles(CFBs) and the thermal cycles were investigated. The microstructure of T700 CFBs was analyzed with Raman spectra and XRD before and after the thermomechanical test. The results indicated that the T700 CFBs exhibited negative expan-sion in the direction of parallel fibers in the temperature range of‒150―150 °C. The thermal strain that occurred during the heating and the cooling thermal cycle had an unclosed curve that served as the loop. When the experimen-tal load was the same, the position of strain loop tended to move upward, and the length of the specimen increased continuously with the thermal cycles increasing. The microstructural analysis suggested that the degree of structural order and the degree of orientation along the fiber axis were improved with the increase of thermal cycles. The change of microstructure parameters could be the primary cause of the negative CTE’s variation within the T700 CFBs.

Keywords

T700 carbon fiber bundle Thermal cycle Coefficient of thermal expansion Microstructural analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7430_MOESM1_ESM.pdf (260 kb)
Effect of thermal cycles on the thermal expansion behavior of T700 carbon fiber bundles

References

  1. [1]
    Terada M., Bludworth N., Moore J., Sullivan J., SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, Brasilia, 2005, 647Google Scholar
  2. [2]
    Van’t Klooster K., Scialino L., Cherniavski A., International Confe-rence on Antenna Theory and Techniques, Kyiv, 2005, 70Google Scholar
  3. [3]
    Akira M., Satoshi H., Mitsunobu W., Acta Astronaut., 2003, 53Google Scholar
  4. [4]
    Thomson M. W., Antennas and Propagation Society International Symposium, Orlando, 2002, 1516Google Scholar
  5. [5]
    Gao L. L., Lu H. Y., Lin H. B., Sun X. Y., Xu J. L., Liu P. C., Li Y., Chem. Res. Chinese Universities 2014, 30(3), 441CrossRefGoogle Scholar
  6. [6]
    Li Q. M., Chem. Res. Chinese Universities 2013, 29(5), 1011CrossRefGoogle Scholar
  7. [7]
    Farooq U., Myler P., Acta Astronaut 2014, 102, 169CrossRefGoogle Scholar
  8. [8]
    Bhagat A. R., Mahajan P., J. Mater. Eng. Perform, 2016, 25, 1CrossRefGoogle Scholar
  9. [9]
    Liu X., Wu M. E., Ma X. F., Fang H. F., Spacecraft Structures Con-ference, National Harbor 2014, 24(1), 27Google Scholar
  10. [10]
    Rahmat-Samii Y., Huang J., Lopez B., Lou M., Im E., Durden S. L., Bahadori K., IEEE T. Antenn. Propag., 2005, 53, 2503CrossRefGoogle Scholar
  11. [11]
    Wolff E.G., J. Compos. Mater., 1987, 21,81CrossRefGoogle Scholar
  12. [12]
    Davis G. T., Eby R. K., Colson J. P., J. Appl. Phys., 1970, 41, 4316CrossRefGoogle Scholar
  13. [13]
    Kobayashi Y., Keller A., Polymer 1970, 11, 114CrossRefGoogle Scholar
  14. [14]
    Choy C. L., Chen F. C., Young K., J. Polym. Sci. Pol. Phys., 1981, 19, 335CrossRefGoogle Scholar
  15. [15]
    Sauder C., Lamon J., Pailler R., Carbon 2004, 42, 715CrossRefGoogle Scholar
  16. [16]
    Pradere C., Batsale J. C., Goyhénèche J. M., Pailler R., Dilhaire S., Carbon 2009, 47, 737CrossRefGoogle Scholar
  17. [17]
    Kanagaraj S., Pattanayak S., Cryogenics 2003, 43, 399CrossRefGoogle Scholar
  18. [18]
    Praveen R. S., Jacob S., Murthy C. R. L., Balachandran P., Rao Y. V. K. S., Cryogenics 2011, 51, 95CrossRefGoogle Scholar
  19. [19]
    Schwarz G., Cryogenics 1988, 28, 248CrossRefGoogle Scholar
  20. [20]
    Tuinstra F., Koenig J. L., J. Compos. Mater., 1970, 4, 492CrossRefGoogle Scholar
  21. [21]
    Bruckmoser K., Resch K., Kisslinger T., Lucyshyn T., Polym. Test. 2015, 46, 122CrossRefGoogle Scholar
  22. [22]
    Khayyam H., Fakhrhoseini S. M., Church J. S., Milani A. S., Bab-Hadiashar A., Jazar R., Naebe M., Appl. Therm. Eng. 2017, 125, 1539CrossRefGoogle Scholar
  23. [23]
    Liu M. S., Bursill L. A., Prawer S., Beserman R., Phys. Rev. B 2000, 61, 3391CrossRefGoogle Scholar
  24. [24]
    Ammar M. R., Rouzaud J. N., J. Raman Spectrosc., 2012, 43, 207CrossRefGoogle Scholar
  25. [25]
    Ferrari A. C., Robertson J., Phys. Rev. B 2000, 61, 14095CrossRefGoogle Scholar
  26. [26]
    Ferrari A. C., Rodil S. E., Robertson J., Phys. Rev. B 2003, 67, 1553061CrossRefGoogle Scholar
  27. [27]
    Tay B. K., Shi X., Tan H. S., Yang H. S., Sun Z., Surf. Coat. Tech. 1998, 105, 155CrossRefGoogle Scholar
  28. [28]
    Huang Y., Young R. J., Carbon 1995, 33, 97CrossRefGoogle Scholar
  29. [29]
    Robinson I. M., Zakikhani M., Day R. J., Young R. J., Galiotis C., J. Mater. Sci. Lett., 1987, 6, 1212CrossRefGoogle Scholar
  30. [30]
    Wang A., Dhamenincourt P., Dubessy J., Guerard D., Landais P., Le-laurain M., Carbon 1989, 27, 209CrossRefGoogle Scholar
  31. [31]
    Li D., Wang H., Wang X., J. Mater. Sci., 2007, 42, 4642CrossRefGoogle Scholar
  32. [32]
    Northolt M. G., Veldhuizen L. H., Jansen H., Carbon 1991, 29, 1267CrossRefGoogle Scholar
  33. [33]
    Ogale A. A., Lin C., Anderson D. P., Kearns K. M., Carbon 2002, 40, 1309CrossRefGoogle Scholar
  34. [34]
    Manocha L. M., Bahl O. P., Fibre Sci. Tech. 1982, 17, 221CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinP. R. China
  2. 2.CAST-Xi’an Institute of Space Radio TechnologyXi’anP. R. China

Personalised recommendations